如图,在棱长为1的正方体ABCD-A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为

想知道EF是怎么算出来的,详细点,谢谢,... 想知道EF是怎么算出来的 ,详细点,谢谢 , 展开
飘渺的绿梦2
2012-10-05 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4286
采纳率:84%
帮助的人:1693万
展开全部
题目与解法不一致!题目给出的正方体棱长为1,解法中却设为2。

现在以题目中叙述不依据给出答案:
∵M、N分别是A1B1、BB1的中点,而A1B1=BB1=1,∴B1M=B1N=1/2。
∵B1E是MA平移所得,∴B1E∥MA、B1E=MA,∴AEB1M是平行四边形,∴AE=B1M=1/2,
∴BE=AB-AE=1-1/2=1/2。
∵B1F是NC平移所得,∴B1F∥NC、B1F=NC,∴CFB1N是平行四边形,∴FC=B1N=1/2。
∵ABCD-AB1C1D1是正方体,∴ABCD是正方形,∴BE⊥BC,
∴CE^2=BE^2+BC^2=(1/2)^2+1=5/4。
∴FC⊥平面ABCD,∴FC⊥CE,∴EF=√(FC^2+CE^2)=√[(1/2)^2+5/4]=√6/2。

容易求出:B1E=B1F=√[(1/2)^2+1]=√5/2。
∴sin[(1/2)∠EB1F]=(1/2)EF/B1E=(1/2)×(√6/2)/(√5/2)=√6/(2√5)。
∴cos∠EB1F=1-2{sin[(1/2)∠EB1F]}^2=1-2×6/(4×5)=2/5。
∵B1E∥MA、B1F∥NC,∴∠EB1F=AM与CN所成的角。
∴AM与CN所成角的余弦值是2/5。

注:cos∠EB1F也可以由余弦定理求出。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式