已知实数x ,y 满足x^2+3x+y-3=0,则x+y的最大值为?解题步骤中的问题

解题步骤:令x+y=k解得y=k-x代入x^2+3x+y-3=0得x^2+3x+k-x-3=0x^2+2x+k-3=0令△=4-4(k-3)=0解得k=4故x+y的最大值... 解题步骤:
令x+y=k
解得y=k-x代入x^2+3x+y-3=0得
x^2+3x+k-x-3=0
x^2+2x+k-3=0
令△=4-4(k-3)=0
解得k=4
故x+y的最大值为4

这里为何令△=4-4(k-3)=0?
展开
清风明月流云
2012-10-04 · TA获得超过7200个赞
知道大有可为答主
回答量:1647
采纳率:85%
帮助的人:1674万
展开全部
这里简略了一步,
△=4-4(k-3)=16-4k
由于方程x^2+2x+k-3=0有实数根,因此△≥0,即16-4k≥0
所以k≤4
所以k的最大值为4
大奕忠1Q
2012-10-04 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5494
采纳率:75%
帮助的人:4195万
展开全部
应该是这样做的
因为x有意义,所以为了有解
△=4-4(k-3)>=0

4-4k+12>=0
k<=4
最大值是4
这才是对的做法

答案只是凑巧蒙对了而已
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
刷鲜花CG
2012-10-04 · 超过25用户采纳过TA的回答
知道答主
回答量:232
采纳率:0%
帮助的人:79.9万
展开全部
△=0说明
方程x^2+2x+k-3=0有两个相同的解
反映在图像上,就是有唯一交点,此时x+y才有极值
本题可以用图像法解决,更容易理解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-10-04
展开全部
令x+y=k
解得y=k-x代入x^2+3x+y-3=0得
x^2+3x+k-x-3=0
x^2+2x+k-3=0
∵x是实数
∴△≥0
即4-4(k-3)≥0
∴k≤4
即k的最大值为4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
仅此而已529
2012-10-04
知道答主
回答量:3
采纳率:0%
帮助的人:3.2万
展开全部
方程ax^2+bx+c=0 △=b^2-4ac 再把数字带进公式就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式