数学中一个点在直角坐标系中绕原点旋转90或180度后的坐标怎么求?
90度时,旋转后的点的横坐标的绝对值为原先的点的纵坐标的绝对值,纵坐标的绝对值为原先的点的横坐标的绝对值。
即|x*|=|y|,|y*|=|x|,具体值需画坐标系确定,切记有两个答案,顺时针旋转和逆时针旋转两种情况,这两个点关于原点对称,横纵坐标互为相反数。
180度时,旋转后地点的横纵坐标与原先的点的横纵坐标互为相反数,即关于原点对称。
X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点不属于任何象限。在平面直角坐标系中可以依据点坐标画出反比例函数、正比例函数、一次函数、二次函数等的图象。
扩展资料:
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。(两轴正半轴的区域为第一象限,象限按逆时针顺序排列)
一元二次方程,当K>0时,两个分支分别位于第一象限和第三象限内,在每个象限内Y随X的增大而减小;当K<0时,两个分支分别位于第二象限和第四象限内,在每个象限内,Y随X的增大而增大。
当X的绝对值无限增大或接近于零时,反比的两个分支都无限接近X轴Y轴,但绝不和X轴,Y轴相交。
参考资料来源:百度百科--直角坐标系
2024-10-27 广告
以平面直角坐标系为例
1)、顺时针90度:首先要横纵坐标绝对值交换,然后分一下情况讨论,第一象限到第二象限x轴为负y轴为正,第二象限到第三象限x轴为负y轴为负,第三象限到第四象限x轴为正y轴为负,第四象限到第一象限x轴为正y轴为正。
如果点在坐标轴x正半轴上,那么顺时针会转到y轴的负半轴。同理易于推理。
2)、逆时针90度:首先要横纵坐标绝对值交换,然后分一下情况讨论,第一象限到第四象限x轴为正y轴为负,第四象限到第三象限x轴为负y轴为负,第三象限到第二象限x轴为负y轴为正,第二象限到第一象限x轴为正y轴为正。
3)、旋转180度:变换x轴和y轴坐标的符号(正数变为负数,负数变为正数)。
扩展资料
平面直角坐标系中点的性质和相关公式
一)、点的坐标
在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序数对(即点的坐标(coordinates))与它对应;反过来,对于任意一个有序数对,都有平面上唯一的一点与它对应。
对于平面内任意一点C,过点C分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序数对(ordered pair)(a,b)叫做点C的坐标。一个点在不同的象限或坐标轴上,点的坐标不一样。
二)、特殊位置的点的坐标的特点:
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
2.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴(两点的横坐标不为零);如果两点的纵坐标相同,则两点的连线平行于横轴(两点的纵坐标不为零)。
3.点到轴及原点的距离:
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方的算术平方根
参考资料来源:百度百科-平面直角坐标系
以平面直角坐标系为例
1)、顺时针90度:首先要横纵坐标绝对值交换,然后分一下情况讨论,第一象限到第二象限x轴为负y轴为正,第二象限到第三象限x轴为负y轴为负,第三象限到第四象限x轴为正y轴为负,第四象限到第一象限x轴为正y轴为正。
如果点在坐标轴x正半轴上,那么顺时针会转到y轴的负半轴。同理易于推理。
2)、逆时针90度:首先要横纵坐标绝对值交换,然后分一下情况讨论,第一象限到第四象限x轴为正y轴为负,第四象限到第三象限x轴为负y轴为负,第三象限到第二象限x轴为负y轴为正,第二象限到第一象限x轴为正y轴为正。
3)、旋转180度:变换x轴和y轴坐标的符号(正数变为负数,负数变为正数)。
扩展资料
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。(两轴正半轴的区域为第一象限,象限按逆时针顺序排列)
一元二次方程,当K>0时,两个分支分别位于第一象限和第三象限内,在每个象限内Y随X的增大而减小;当K<0时,两个分支分别位于第二象限和第四象限内,在每个象限内,Y随X的增大而增大。
当X的绝对值无限增大或接近于零时,反比的两个分支都无限接近X轴Y轴,但绝不和X轴,Y轴相交。
参考资料来源:百度百科--直角坐标系
考试中这样既浪费时间又会有误差啊!