证明数列收敛的方法

 我来答
百度网友d04711f
推荐于2017-12-16 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6642
采纳率:0%
帮助的人:1亿
展开全部
先证明Xn是有下界的
(单调有界准则)
例如:Xn+1=(1/Xn)+Xn/2,
Xn肯定是大于零的,
因为Xn+1=Xn*[1/(Xn^2)+1/2], 中括号里的必定大于零,所以Xn+1与Xn是同号的,又X1=4,所以Xn>0.
所以Xn+1=(1/Xn)+Xn/2>2[(1/Xn)*Xn/2]^0.5=2^0.5, 即Xn的最小值为2^0.5

Xn+1/Xn=1/(Xn^2)+1/2, 因为Xn的最小值为2^0.5,所以1/(Xn^2)+1/2<=1
所以Xn+1/Xn<=1
所以数列Xn是单调减少的,根据单调有界准则知数列Xn有极限。

设Xn的界限为A, 则对Xn+1=(1/Xn)+Xn/2两端取极限,
有 A=1/A+A/2,
解这个方程得 A=2^0.5或-2^0.5, 舍去负根,得A=2^0.5
所以该数列的极限为2^0.5
还有夹逼准则,柯西准则等
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式