如图,△ABC为等边三角形,点D,E,F分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF
1个回答
2012-10-04
展开全部
BD=CE BF=CD 因为角2=角B=角C=角E=角F=60
角1+角2+角3=180
角C+角4+角3=180
角B+角5+角1=180
所以角1=角4 角5=角3
三角形BFD与三角形CDE全等
同理,三角形BFD CDE AEF 都全等
那么 BE=CF=AD AD=BE=CF
角1+角2+角3=180
角C+角4+角3=180
角B+角5+角1=180
所以角1=角4 角5=角3
三角形BFD与三角形CDE全等
同理,三角形BFD CDE AEF 都全等
那么 BE=CF=AD AD=BE=CF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询