4个回答
展开全部
一、排列组合部分是中学数学中的难点之一,原因在于
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
把那几个常用公式记的很牢很牢的,随便燃握问你一下,你就能马上把公式反应在大脑里,这是基础要求.其次是要融会贯通,有些变形的式子,你也要能一眼看穿它的本质.然后就是分清楚什么是排列,什么是组合,这个需要你知道很顺序有没有关系.跟顺序有关的是排列,无关的是组合.这是解题的时候第一步就要知道的东西,一道题目是排列问题,或者是组合问题,或者两者都有,是你看到题目后首先想到需要明确的,知道了这,你才能不会在答题的时候出现与答题点相悖的情况.最后就是需要你列式解答了,这个过程中你需要知道的是题目中的哪些信息有用,哪些是迷惑你或好的信息.
二项式定理就是要背公式,然后要有"整体的观点",也就是说,有的式子很复杂,但是你要是能把那些复杂的式子看作一个整体的话,就会发现是那么简单,然后就可以很好的解题了.有的时候,运用公式的条件不具备,那么你就想个办法,做个等量代换,比如乘以一个数,再除以一个数,这样,在括号里的式子就能使用公式了.然后计算出来以后再化简,就能得到你需要的结果.
以上是我个人的学习心得,不知道对你有没有用,不过方法你可以试试.最关键的还是要记住公式,然后有针对性的多看例题,多做跟例题相关的皮团庆习题,这样,就一定能学好排列组合和二项式定理.因为数学就是一个"悟跟练"的过程,祝你好运.还有啥问题可以继续贴出,希望我能帮你解决!
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
把那几个常用公式记的很牢很牢的,随便燃握问你一下,你就能马上把公式反应在大脑里,这是基础要求.其次是要融会贯通,有些变形的式子,你也要能一眼看穿它的本质.然后就是分清楚什么是排列,什么是组合,这个需要你知道很顺序有没有关系.跟顺序有关的是排列,无关的是组合.这是解题的时候第一步就要知道的东西,一道题目是排列问题,或者是组合问题,或者两者都有,是你看到题目后首先想到需要明确的,知道了这,你才能不会在答题的时候出现与答题点相悖的情况.最后就是需要你列式解答了,这个过程中你需要知道的是题目中的哪些信息有用,哪些是迷惑你或好的信息.
二项式定理就是要背公式,然后要有"整体的观点",也就是说,有的式子很复杂,但是你要是能把那些复杂的式子看作一个整体的话,就会发现是那么简单,然后就可以很好的解题了.有的时候,运用公式的条件不具备,那么你就想个办法,做个等量代换,比如乘以一个数,再除以一个数,这样,在括号里的式子就能使用公式了.然后计算出来以后再化简,就能得到你需要的结果.
以上是我个人的学习心得,不知道对你有没有用,不过方法你可以试试.最关键的还是要记住公式,然后有针对性的多看例题,多做跟例题相关的皮团庆习题,这样,就一定能学好排列组合和二项式定理.因为数学就是一个"悟跟练"的过程,祝你好运.还有啥问题可以继续贴出,希望我能帮你解决!
展开全部
不难的,和其他内容比起来简单多了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中任何一部分如果不去多做题目都是难点,题目做多了就不难了,相对来说,解析几何是最难的一章
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询