
如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF
展开全部
证明:连接DE与DF,因为AB=AC,所以∠B=∠C,又因为BD=CF,BE=CD,所以
⊿BDE≌⊿CFD,得DE=DF,G是EF的中点,所以EG=GF ,DG公共,所以⊿DEG≌⊿DFG,则
∠EGD=∠FGD=90°,得证。
由已知得,△ABC为等腰三角形
∴∠B=∠C
在中
由已知BE=CD,BD=CF,且∠B=∠C
∴△EBD≌△DCF
所以ED=DF
即△EDF为等腰三角形,EF为底边
又∵G是EF的中点,即DG是底边EF上的高(中线、顶角的平分线)
∴DG⊥EF
⊿BDE≌⊿CFD,得DE=DF,G是EF的中点,所以EG=GF ,DG公共,所以⊿DEG≌⊿DFG,则
∠EGD=∠FGD=90°,得证。
由已知得,△ABC为等腰三角形
∴∠B=∠C
在中
由已知BE=CD,BD=CF,且∠B=∠C
∴△EBD≌△DCF
所以ED=DF
即△EDF为等腰三角形,EF为底边
又∵G是EF的中点,即DG是底边EF上的高(中线、顶角的平分线)
∴DG⊥EF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询