已知a+b+c=1,求证a²+b²+c²≥1/3
展开全部
由a+b+c=1得到
(a+b+c)^2=1
a^2+b^2+c^2+2ab+2bc+2ac=1
a^+b^2+c^2=1-2ab-2bc-2ac>=1-(a^2+b^2)-(b^2+c^2)-(a^2+c^2)
=1-2a^2-2b^2-2c^2
所以3(a^2+b^2+c^2)>=1
所以a^2+b^2+c^2≥1/3
(a+b+c)^2=1
a^2+b^2+c^2+2ab+2bc+2ac=1
a^+b^2+c^2=1-2ab-2bc-2ac>=1-(a^2+b^2)-(b^2+c^2)-(a^2+c^2)
=1-2a^2-2b^2-2c^2
所以3(a^2+b^2+c^2)>=1
所以a^2+b^2+c^2≥1/3
追问
请问a^+b^2+c^2=1-2ab-2bc-2ac>=1-(a^2+b^2)-(b^2+c^2)-(a^2+c^2)
为什么是≥呢?这是一个公式吗?
为什么a²+b²=2a² b²+ c²=2b² a²+ c²=2c²呢
追答
2ab<=a^2+b^2
2bc<=b^2+c^2
2ac<=a^2+c^2
这就是完全平方公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询