
已知f(x)=3x²-12x+5,当f(x)的定义域为[0,a]时,求函数f(x)的最大值和最小值.
展开全部
f(x)=3x²-12x+5=3(x²-4x)+5=3(x-2)²-7
即:对称轴为x=2
0关于2的对称点为4
画图易知
当a≥4时:
最小值f(x)=f(2)=-7
最大值f(x)=f(a)=3a²-12a+5
当2≤a<4时:
最小值f(x)=f(2)=-7
最大值f(x)=f(0)=5
当0<a<2时:
最小值f(x)=f(a)=3a²-12a+5
最大值f(x)=f(0)=5
希望我的回答对你有帮助,采纳吧O(∩_∩)O!
即:对称轴为x=2
0关于2的对称点为4
画图易知
当a≥4时:
最小值f(x)=f(2)=-7
最大值f(x)=f(a)=3a²-12a+5
当2≤a<4时:
最小值f(x)=f(2)=-7
最大值f(x)=f(0)=5
当0<a<2时:
最小值f(x)=f(a)=3a²-12a+5
最大值f(x)=f(0)=5
希望我的回答对你有帮助,采纳吧O(∩_∩)O!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询