高数极限证明……
请用函数极限的定义证明:lima^x(x趋向于正无穷)=正无穷(a>1)快被这种显然的证明搞死……球数学帝伸出援手……...
请用函数极限的定义证明:lima^x(x趋向于正无穷)=正无穷(a>1)
快被这种显然的证明搞死……球数学帝伸出援手…… 展开
快被这种显然的证明搞死……球数学帝伸出援手…… 展开
4个回答
展开全部
首先 这个从指数函数的图像上看是显然趋于正无穷的
其次 这个称之为极限不存在,极限存在的定义是当x趋于x。时存在任意大于0的数E,使得|f(x)-A|<E成立。正无穷不存在这个性质,因为正无穷永远没有尽头,没有最大只有更大
这样的A你说存在么
其次 这个称之为极限不存在,极限存在的定义是当x趋于x。时存在任意大于0的数E,使得|f(x)-A|<E成立。正无穷不存在这个性质,因为正无穷永远没有尽头,没有最大只有更大
这样的A你说存在么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个简单,首先对任意的正数M,存在一个X=[log a(M)],使得当
x>X时,有:
a^x>a^X>a^(log a(M))=M;
上面的式子说明任意找一个正数,都能在某个数以后,使得函数值比找的正数大。
所以lima^x(x趋向于正无穷)=正无穷(a>1)。
x>X时,有:
a^x>a^X>a^(log a(M))=M;
上面的式子说明任意找一个正数,都能在某个数以后,使得函数值比找的正数大。
所以lima^x(x趋向于正无穷)=正无穷(a>1)。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义证明:对任何A>0 ,存在X=loga(A)>0,使得对任何x>X 都有a^x>a^(X)=A
所以
lima^x(x趋向于正无穷)=正无穷(a>1)
所以
lima^x(x趋向于正无穷)=正无穷(a>1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于任给的G>1,取X=(lnG/lna)>0,则当x>X时,就有a^x>G
从而由定义可证
从而由定义可证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询