1、一元二次方程2x²+5x+3=0的解是( ) 2、一元二次方程(1+3x)(2x-3)=5x²-x-7化为一般形式为
3、方程(m²-1)x²+(m+1)x-1=0,当m()时,方程为关于x的一元二次方程;当m=()时,方程为关于x的一元一次方程。4、若n(n≠0)是...
3、方程(m²-1)x²+(m+1)x-1=0,当m( )时,方程为关于x的一元二次方程;当m=( )时,方程为关于x的一元一次方程。
4、若n(n≠0)是关于x的方程x²+mx+2n=0,则m+n的值为( )
5、请写出一个两根恰为相反数(且不为0)的一元二次方程:
6、已知a、b为实数,现规定一种新运算:a·b=a²-b²,那么当(2x+9)·(3-x)=0时,实数x=( )
7、设a、b是一个直角三角形两条直角边的长,且(a²+b²)(a²+b²+1)=12,则这个直角三角形的斜边长为( )
8、已知a、b是一元二次方程x²-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于( )
9、某制药厂两年前生产1t某种药品的成本是100万元,随着生产技术的进步,现在生产1t这种药品的成本为81万元,则这种药品的成本的年平均下降率为( )
10、用100cm长的铁丝折成一个面积为525cm²的长方形,则长方形的长为( )cm,宽为( )cm
答的好的话我会加分,不会加少的。 展开
4、若n(n≠0)是关于x的方程x²+mx+2n=0,则m+n的值为( )
5、请写出一个两根恰为相反数(且不为0)的一元二次方程:
6、已知a、b为实数,现规定一种新运算:a·b=a²-b²,那么当(2x+9)·(3-x)=0时,实数x=( )
7、设a、b是一个直角三角形两条直角边的长,且(a²+b²)(a²+b²+1)=12,则这个直角三角形的斜边长为( )
8、已知a、b是一元二次方程x²-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于( )
9、某制药厂两年前生产1t某种药品的成本是100万元,随着生产技术的进步,现在生产1t这种药品的成本为81万元,则这种药品的成本的年平均下降率为( )
10、用100cm长的铁丝折成一个面积为525cm²的长方形,则长方形的长为( )cm,宽为( )cm
答的好的话我会加分,不会加少的。 展开
4个回答
展开全部
1)2x²+5x+3=0
x1=-1 x2=-3/2
2)(1+3x)(2x-3)=5x²-x-7
-7x+6x²-3=5x²-x-7
x²-6x+4=0
3)方程(m²-1)x²+(m+1)x-1=0,当m(不等于 ±1)时,方程为关于x的一元二次方程;当m=( ﹣1)时,方程为关于x的一元一次方程。
4)将n代入x²+mx+2n=0中的x
得;n²+mn+2n=0
n(n+m+2)=0
∵n≠0
∴n+m+2=0
m+n=2
5)x²-1=0 x²-2=0 x²-3=0 x²-100=0
6)(2x+9)²-(3-x)²=0
4x²+18x+81-9+6x-x²=0
3x²+24x+72=0
x²+8x+24=0
x 无解
7)设斜边为c
根据题意a²+b²=c²
代入(a²+b²)(a²+b²+1)=12
得c²(c²+1)=12
(c²+4)(c²-3)=0
c²=3
c=√3
8)x²-2x-1=0
a,b=2±√2
(a-b)(a+b-2)+ab=【2+√2-(2-√2)】【2+√2+(2-√2)-2】+(2+√2)(2-√2)
=4√2-2
9)设年均下降率为x万元。
100(x-1)²=81
(x-1)²=0.81
x1=10% x2=190%(舍去)
10)设长为x, 宽为(100-2x)/2
x(100-2x)/2=525
x²-50x+525=0
(x-35)(x-15)=0
x1=35 x2=15
答:长35 宽15
打了这么多符号,真麻烦,而且非常详细,一定要加分啊!
x1=-1 x2=-3/2
2)(1+3x)(2x-3)=5x²-x-7
-7x+6x²-3=5x²-x-7
x²-6x+4=0
3)方程(m²-1)x²+(m+1)x-1=0,当m(不等于 ±1)时,方程为关于x的一元二次方程;当m=( ﹣1)时,方程为关于x的一元一次方程。
4)将n代入x²+mx+2n=0中的x
得;n²+mn+2n=0
n(n+m+2)=0
∵n≠0
∴n+m+2=0
m+n=2
5)x²-1=0 x²-2=0 x²-3=0 x²-100=0
6)(2x+9)²-(3-x)²=0
4x²+18x+81-9+6x-x²=0
3x²+24x+72=0
x²+8x+24=0
x 无解
7)设斜边为c
根据题意a²+b²=c²
代入(a²+b²)(a²+b²+1)=12
得c²(c²+1)=12
(c²+4)(c²-3)=0
c²=3
c=√3
8)x²-2x-1=0
a,b=2±√2
(a-b)(a+b-2)+ab=【2+√2-(2-√2)】【2+√2+(2-√2)-2】+(2+√2)(2-√2)
=4√2-2
9)设年均下降率为x万元。
100(x-1)²=81
(x-1)²=0.81
x1=10% x2=190%(舍去)
10)设长为x, 宽为(100-2x)/2
x(100-2x)/2=525
x²-50x+525=0
(x-35)(x-15)=0
x1=35 x2=15
答:长35 宽15
打了这么多符号,真麻烦,而且非常详细,一定要加分啊!
展开全部
1、一元二次方程2x²+5x+3=0的解是(-3/2,-1)
(2x+3)(x+1)=0
2、一元二次方程(1+3x)(2x-3)=5x²-x-7化为一般形式为
(3x+1)(2x-3)=5x²-x-7
6x²-7x-3=5x²-x-7
x²-6x+4=0
3、方程(m²-1)x²+(m+1)x-1=0,当m(≠±1)时,方程为关于x的一元二次方程;当m=(1)时,方程为关于x的一元一次方程。
(2x+3)(x+1)=0
2、一元二次方程(1+3x)(2x-3)=5x²-x-7化为一般形式为
(3x+1)(2x-3)=5x²-x-7
6x²-7x-3=5x²-x-7
x²-6x+4=0
3、方程(m²-1)x²+(m+1)x-1=0,当m(≠±1)时,方程为关于x的一元二次方程;当m=(1)时,方程为关于x的一元一次方程。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3、方程(m²-1)x²+(m+1)x-1=0,当m(不等于1或者-1 )时,方程为关于x的一元二次方程;当m=( 1 )时,方程为关于x的一元一次方程。
4、若n(n≠0)是关于x的方程x²+mx+2n=0,则m+n的值为(-2 )
5、请写出一个两根恰为相反数(且不为0)的一元二次方程:x的平方=1
6、已知a、b为实数,现规定一种新运算:a·b=a²-b²,那么当(2x+9)·(3-x)=0时,实数x= -12 或者-2 )
7、设a、b是一个直角三角形两条直角边的长,且(a²+b²)(a²+b²+1)=12,则这个直角三角形的斜边长为(2 )
8、已知a、b是一元二次方程x²-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于( -1 )
9、某制药厂两年前生产1t某种药品的成本是100万元,随着生产技术的进步,现在生产1t这种药品的成本为81万元,则这种药品的成本的年平均下降率为(0.9 )
10、用100cm长的铁丝折成一个面积为525cm²的长方形,则长方形的长为(35 )cm,宽为(15 )cm
4、若n(n≠0)是关于x的方程x²+mx+2n=0,则m+n的值为(-2 )
5、请写出一个两根恰为相反数(且不为0)的一元二次方程:x的平方=1
6、已知a、b为实数,现规定一种新运算:a·b=a²-b²,那么当(2x+9)·(3-x)=0时,实数x= -12 或者-2 )
7、设a、b是一个直角三角形两条直角边的长,且(a²+b²)(a²+b²+1)=12,则这个直角三角形的斜边长为(2 )
8、已知a、b是一元二次方程x²-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于( -1 )
9、某制药厂两年前生产1t某种药品的成本是100万元,随着生产技术的进步,现在生产1t这种药品的成本为81万元,则这种药品的成本的年平均下降率为(0.9 )
10、用100cm长的铁丝折成一个面积为525cm²的长方形,则长方形的长为(35 )cm,宽为(15 )cm
追问
求1、2题的答案
追答
1、一元二次方程2x²+5x+3=0的解是(-3/2 和 -1 ) 2、一元二次方程(1+3x)(2x-3)=5x²-x-7化为一般形式为 x²-6x+4=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
⑴x₁=-0·5,x₂=-2 ⑵x²-6x+4=0 ⑶m≠±1,m=1
更多追问追答
追问
额,就这些?
追答
⑴x₁=-1·5,x₂=-1 ⑸x²-1=0 ⑹x₁=-12,x₂=-2 ⑺x=√3 ⑻-1 ⑼10%
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询