请问什么是取共轭?怎样对一个函数取共轭,请举几个例子。谢谢
取共轭是对复数而言:
若 a, b为实数,z=a + bj 为复数,其中:j=√(-1) 为虚数单位;
那么复数 z 的共轭为:z* = a - bj :
举例:z = 2+3j,那么z的共轭z*=2-3j
z=5-7j,那么z*=5+7j
对一个复值函数: z(x)=a(x)+jb(x),其中a(x)和b(x)都是实值函数,x为实数,
那么z(x)的共轭为:z*(x)=a(x) - jb(x):
举一例:a(x)=cosx,b(x)=sinx
z(x)=a(x)+jb(x)=cosx +j sinx
z*(x)=cosx - jsinx
总之,一个复数取共轭,原来的实部不变,虚部变号,即可。
若z=a+bi(a,b∈R),则 =a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
扩展资料:
在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源。两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反。
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
减法法则:两个复数的差为实数之差加上虚数之差(乘以i)
即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i
乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2 = -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
即:z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(bc+ad)i.
除法法则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
参考资料来源:百度百科——共轭复数
取共轭是对复数而言:
若 a, b为实数,z=a + bj 为复数,其中:j=√(-1) 为虚数单位;
那么复数 z 的共轭为:z* = a - bj :
举例:z = 2+3j,那么z的共轭z*=2-3j
z=5-7j,那么z*=5+7j
对一个复值函数: z(x)=a(x)+jb(x),其中a(x)和b(x)都是实值函数,x为实数,
那么z(x)的共轭为:z*(x)=a(x) - jb(x):
举一例:a(x)=cosx,b(x)=sinx
z(x)=a(x)+jb(x)=cosx +j sinx
z*(x)=cosx - jsinx
扩展资料:
复数,虚数的起源:
要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。
有理数是伴随人们的生产实践而产生的。无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。
不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与边长的比不能用任何“数”来表示。
西亚他们已经发现了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。
“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
取共轭是对复数而言:
若 a, b为实数,z=a + bj 为复数,其中:j=√(-1) 为虚数单位;
那么复数 z 的共轭为:z* = a - bj :
举例:z = 2+3j,那么z的共轭z*=2-3j
z=5-7j,那么z*=5+7j
对一个复值函数: z(x)=a(x)+jb(x),其中a(x)和b(x)都是实值函数,x为实数,
那么z(x)的共轭为:z*(x)=a(x) - jb(x):
举一例:a(x)=cosx,b(x)=sinx
z(x)=a(x)+jb(x)=cosx +j sinx
z*(x)=cosx - jsinx
总之,一个复数取共轭,原来的实部不变,虚部变号,即可。
若z=a+bi(a,b∈R),则 =a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
扩展资料:
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
减法法则:两个复数的差为实数之差加上虚数之差(乘以i)即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i
三角函数
sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)
=sin(a)cosh(b)+isinh(b)cos(a)
cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)
=cos(a)cosh(b)+isinh(b)sin(a)
tan(a+bi)=sin(a+bi)/cos(a+bi)
cot(a+bi)=cos(a+bi)/sin(a+bi)
sec(a+bi)=1/cos(a+bi)
csc(a+bi)=1/sin(a+bi)
四则运算
(a+bi)±(c+di)=(a±c)+(b±d)i
(a+bi)(c+di)=(ac-bd)+(ad+bc)i
(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)
r1(isina+cosa)r2(isinb+cosb)=r1r2[cos(a+b)+isin(a+b)]
r1(isina+cosa)/r2(isinb+cosb)=r1/r2[cos(a-b)+isin(a-b)]
若 a, b为实数,z=a + bj 为复数,其中:j=√(-1) 为虚数单位;
那么复数 z 的共轭为:z* = a - bj :
举例:z = 2+3j,那么z的共轭z*=2-3j
z=5-7j,那么z*=5+7j
对一个复值函数: z(x)=a(x)+jb(x),其中a(x)和b(x)都是实值函数,x为实数,
那么z(x)的共轭为:z*(x)=a(x) - jb(x):
举一例:a(x)=cosx,b(x)=sinx
z(x)=a(x)+jb(x)=cosx +j sinx
z*(x)=cosx - jsinx
总之,一个复数取共轭,原来的实部不变,虚部变号,即可。