|A-E|行列式计算,通过特征值求行列式的值

已知A的特征值为1,1,-2,求|A-E3|,|A+2E3|,|A²+3A-4E3|的值,实在看书都不会做啊。其中的E3里面的3都是下标,请教一下,并告诉我如何... 已知A的特征值为1,1,-2,求|A-E3|,|A+2E3|,|A²+3A-4E3|的值,实在看书都不会做啊。其中的E3里面的3都是下标,请教一下,并告诉我如何计算的,如果直接告诉我结果的就算了 展开
天下谈生活
2021-10-16 · 生活的艺术不在传授,而在鼓舞和唤醒。
天下谈生活
采纳数:106 获赞数:3410

向TA提问 私信TA
展开全部

综述:注意到1,2为特征值故|A-E3|,|A+2E3|都等于零|A²+3A-4E3|=|A-E3||A+4E3|=0。

设f(x)=x^2+3x-1

则B=f(A)

由特征值的性质知:若λ是矩阵A的特征值,则f(λ)就是多项式矩阵f(A)的特征值,所以B=f(A)的特征值是:f(-1),f(2),f(2)。

即B的特征值是:f(-1)=(-1)^2+3*(-1)-1=-3

f(2)=2^2+3*2-1=9

f(2)=9

特征值是指设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

广义特征值

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν,其中A和B为矩阵。其广义特征值(第二种意义)λ可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
帐号已注销
2021-10-05 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

注意到1,2为特征值故|A-E3|,|A+2E3|都等于零|A²+3A-4E3|=|A-E3||A+4E3|=0。

设f(x)=x^2+3x-1

则B=f(A)

由特征值的性质知:若λ是矩阵A的特征值,则f(λ)就是多项式矩阵f(A)的特征值,

所以B=f(A)的特征值是:f(-1),f(2),f(2)

即B的特征值是:f(-1)=(-1)^2+3*(-1)-1=-3

f(2)=2^2+3*2-1=9

f(2)=9

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
goaha
2012-10-07 · TA获得超过5363个赞
知道大有可为答主
回答量:1346
采纳率:100%
帮助的人:591万
展开全部
汗,

2个方法
第一种方法是最简单的,是注意到1,2为特征值故|A-E3|,|A+2E3|都等于零|A²+3A-4E3|=|A-E3||A+4E3|=0

第二种方法
若f(x)是一个多项式,f(A)称为矩阵多项式。
比如:f(x)=x^2+2x-1
则f(A)=A^2+2A-E
那么有一个结论:
如果a是A的特征值,那么f(a)是F(A)的特征值,且重数一样

另一个结论是,行列式等于其对应的矩阵的特征值的乘积。

本题也可以这么做
A-E3对应的多项式为x-1,故其特征值为:0,0,-3,故|A-E3|=0
A+2E3对应的多项式为x+2,故其特征值为:3,3,0,故|A+2E3|=0
A²+3A-4E3对应的多项式为x^2+3x-4,故其特征值为:0,0,-6,故|A²+3A-4E3|=0

我没猜错,你就昨天那人,你想知道的是第二种做法,其实昨天我已经简单介绍了。
追问
昨天什么时候的事情啊,我昨天自己看书的啊,呵呵
追答
。。。。。。。。。。记错人了。。。。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式