半径为R、圆心为O的大圆环固定在竖直平面内

半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上,它的两端都系上质量为m的重物,忽略小圆环的大小。将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°... 半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上,它的两端都系上质量为m的重物,忽略小圆环的大小。将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上,在两个小圆环间的绳子的C处,挂上一个质量M=√2m的重物,是两个小圆环间的绳子水平,然后无初速释放重物M。设绳子与小圆环间的摩擦力可忽略,求重物M下降的最大距离。
解:重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为 ,由机械能守恒定律得

解得
问题的求解方程中,角度θ为什么等于30°?
展开
西园寺世界110
2012-10-08 · TA获得超过530个赞
知道小有建树答主
回答量:162
采纳率:100%
帮助的人:91.5万
展开全部
两圆环之间的绳子是什么长度,怎么连接的
追问
问题发错了,不知能不能删除?
追答
这个变成满意,我好意外,好没成就感,我勒个去!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式