求解一道AP微积分题!!!!!!
Atnoon,shipAis40nauticalmilesdueeastofshipB.ShipAissailingeastat25knotsandshipBissail...
At noon, ship A is 40 nautical miles due east of ship B. Ship A is sailing east at 25 knots and ship B is sailing north at 20 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
展开
3个回答
展开全部
楼上解的不对,不是distance between,是changing rate of distance,求的是速度
前半段与楼上解法一致,也是设坐标
之后列写距离s=Sqrt((20t)^2+(40+25t)^2)
其中20t是B离原点的距离,40+25t是A离原点的距离,Sqrt()代表取根号
对此方程中的t求导,可得
v=(1250 t + 40 (40 + 20 t))/(2 Sqrt[625 t^2 + (40 + 20 t)^2])
带入t=4,v=245/Sqrt(61)
前半段与楼上解法一致,也是设坐标
之后列写距离s=Sqrt((20t)^2+(40+25t)^2)
其中20t是B离原点的距离,40+25t是A离原点的距离,Sqrt()代表取根号
对此方程中的t求导,可得
v=(1250 t + 40 (40 + 20 t))/(2 Sqrt[625 t^2 + (40 + 20 t)^2])
带入t=4,v=245/Sqrt(61)
展开全部
解:正午(12点)时,A船位于B船的正东40海里处。A船以25节的速度向正东方航行,船B以20节的速度向正北航行,求在下午4点时两船之间的距离变化率(即速度).
设A船的行程为:S1=40+25t, B船的行程为:S2=20t.
两船的合成距离S=√[(40+25t)^2+(20t)^2].
ds/dt=(1/2)*{1/√[(40+25t)^2+(20t)^2]}*[2(40+25t)*(25)+2(20t)*20].
ds/dt=(1/2)*[1/√(140^2+80^2)]*(2*140*25+40*80).
=(1/2)*(1/161.2)*10200.
=10200/322.4.
≈31.63(节). ----即为所求。
【在下午4点时,两船相距ds=31.63*dt=31.63*4=126.5 (海里). 】
设A船的行程为:S1=40+25t, B船的行程为:S2=20t.
两船的合成距离S=√[(40+25t)^2+(20t)^2].
ds/dt=(1/2)*{1/√[(40+25t)^2+(20t)^2]}*[2(40+25t)*(25)+2(20t)*20].
ds/dt=(1/2)*[1/√(140^2+80^2)]*(2*140*25+40*80).
=(1/2)*(1/161.2)*10200.
=10200/322.4.
≈31.63(节). ----即为所求。
【在下午4点时,两船相距ds=31.63*dt=31.63*4=126.5 (海里). 】
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
at noon, mark B as (0,0), then A is (40.0)
at 4pm, B change to (0, 80), A change to (140,0)
distance AB=√(80^2+140^2)=20√65 (nautical mile)
at 4pm, B change to (0, 80), A change to (140,0)
distance AB=√(80^2+140^2)=20√65 (nautical mile)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询