求一个次数不高于四次的多项式P(x),使它满足p(0)=p'(0)=0,p(1)=p'(1)=1,p(2)=1

hsfz876
2012-10-08 · TA获得超过1.3万个赞
知道大有可为答主
回答量:4574
采纳率:50%
帮助的人:4515万
展开全部
设P(x)=ax^4+bx^3+cx^2+dx+e
p(0)=e=0
p'(0)=d=0
p(1)=a+b+c+d+e=1
p'(1)=4a+3b+2c+d=1
p(2)=16a+8b+4c+2d+e=1
显然d=e=0,解下列方程组:
a+b+c=1
4a+3b+2c=1
16a+8b+4c=1
可得:a=1/4,b=-3/2,c=9/4
因此p(x)=(1/4) x^4 - (3/2)x^3 +9/4 x^2
追问
用数值分析的插值法怎么做?
追答
抱歉,我只会初等数学的方法。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhkrddmhw
2012-10-08 · TA获得超过323个赞
知道答主
回答量:160
采纳率:0%
帮助的人:118万
展开全部
设:f(x)=ax^4+bx^3+cx^2+dx+e
f(0)=0 则e=0
f'(x)=4ax^3+3bx^2+2cx+d f'(0)=d=0
f(1)=a+b+c=1
f'(1)=4a+3b+2c=1
f(2)=16a+8b+4c=1
解得:a=1/4 b=-3/2 c=9/4
所以多项式1/4x^4-3/2x^2+9/4x^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式