【【高二数列题】】!

已知等差数列{an}的首项a1=1,且公差d>0,它的第2项,第5项,第14项分别是等比数列{bn}的第2,3,4项。(1)求数列{an}与{bn}的通项公式【【这个问我... 已知等差数列{an}的首项a1=1,且公差d>0,它的第2项,第5项,第14项分别是等比数列{bn}的第2,3,4项。
(1)求数列{an}与{bn}的通项公式
【【这个问我已经算完an=2n-1,bn=3^(n-1)】】
我要问的是第二个问
(2)设数列{cn}对任意正整数n均有c1/b1+c2/b2+……cn/bn=a(n+1)成立,求c1+c2+c3+....+c2003的值
【【请大家写出第二问的详细过程,3Q~】】
展开
暖眸敏1V
2012-10-08 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9792万
展开全部
(2)
∵an=2n-1,bn=3^(n-1)
∴c1/b1+c2/b2+……+cn/bn=a(n+1)=2n+1 ①
当n=1时,c1/b1=3,c1=3b1=3
当n≥2时,c1/b1+c2/b2+……+c(n-1)/b(n-1)=2n-1 ②
①-②得:cn/bn=2
∴cn=2bn=2*3^(n-1)
∴cn={3,n=1
{2*3^(n-1) ,n≥2
{cn}从第二项起为等比数列,公比为3
∴c1+c2+c3+....+c2003
=3+(6+18+27+........+2*3^2002)
=3+6[3^2002-1]/(3-1)
=3+2*(3^2003-3)/2
=3^2003

不明白的地方请追问,望进步
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式