如图,底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABD=60°,E为PC上一动点,PA=AC=2

求证(1)BD⊥AE(2)若E为PC中点,求三棱锥E-PAD体积在线等...................没有图了............. 求证(1)BD⊥AE (2)若E为PC中点,求三棱锥E-PAD体积
在线等...................
没有图了..........
展开
tangmei1001
2012-10-08 · TA获得超过9791个赞
知道大有可为答主
回答量:4347
采纳率:80%
帮助的人:3787万
展开全部
(1)∵PA⊥平面ABCD,∴PA⊥BD,
∵四边形ABCD是菱形,∴AC⊥BD,
又PA∩AC=C,∴BD⊥平面PAC,
∵点E在PC上,∴AE在平面PAC内,∴BD⊥AE。
(2)在Rt△PAC中,∵PA=AC=2,∴△PAC的面积=(1/2)×2×2=2,
∵E是PC的中点,∴△PAE的面积=1/2△PAC的面积=1,
设AC、BD交于O点,则AC、BD互相平分于O,∴AO=1/2AC=1,
在Rt△AOB中,∵∠ABO=60°,∴OB=AO/tan∠ABD=1/√3=√3/3,
故DO=√3/3,
由前面证明可知,DO⊥平面PAE,
∴三棱锥E-PAD的体积=三棱锥D-PAE的体积=(1/3)×△PAE的面积×DO=√3/9。
gsj2533113
2012-10-08 · 超过12用户采纳过TA的回答
知道答主
回答量:30
采纳率:0%
帮助的人:20.9万
展开全部
解 : (1) 连接 AE 、BD ,PA⊥平面ABCD ,得知 PA⊥BD ; 在菱形 ABCD 中 ,BD AC 为对角线 ,BD⊥ AC ;而 AC 、PA在平面PAC 中 且 相交 , 因此 BD ⊥ 平面 PAC ,因此 BD⊥AE,
(2) 若 若E为PC中点 ,则 求三棱锥体积可以转化成求 三棱锥D-PAC体积,之后 除以2 就可以。
PA=AC=2 ,∠ABD=60°,推知 AC=2 , 三棱锥D-PAC体积也是三棱锥P-ACD的体积,PA⊥ 底面 ABCD,因此 三棱锥P-ACD的体积= 1/3 *PA* S(三角形 ACD)=1/3 *2*(2*2*0.5*sin60度)=2*(根号3)/3, 因此 三棱锥E-PAD体积 为 (根号3)/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式