已知a∈R,函数f(x)=e^x+a|x-2|.

(1)当0<a≤e时,若函数f(x)在区间[1,+∞)上的最小值为e+1,求a的值;(2)设实数a使得关于x的不等式f(x)≥x在区间(-∞,2]上恒成立,求证:这样的实... (1)当0<a≤e时,若函数f(x)在区间[1,+∞)上的最小值为e+1,求a的值;
(2)设实数a使得关于x的不等式f(x)≥x在区间(-∞,2]上恒成立,求证:这样的实数a的取值集合为一个区间[a0,+∞),且-1/2<a0<0.
展开
 我来答
adrxy
2012-10-10 · TA获得超过2597个赞
知道小有建树答主
回答量:716
采纳率:100%
帮助的人:248万
展开全部
(1)解:当x∈[1,2)时,f(x)=e^x+a(2-x), 则f'(x)=e^x-a
∵ 0<a≤e
∴ f'(x)≥f'(1)=e-a≥0
∴ f(x)在x∈[1,2)上递增,f(x)最小值=f(1)=e+a
 当x∈[2,+∞)时,f(x)=e^x+a(x-2),则f'(x)=e^x+a
∵ 0<a≤e
∴ f'(x)≥f'(2)=e²+a>0
  ∴ f(x)在x∈[2,+∞)上递增,f(x)最小值= f(2)=e²+a(2-2)=e²
 综上在x∈[1,+∞)上,f(x)最小值=f(1)=e+a=e+1,即有a=1.
(2)证:不等式f(x))=e^x+a|x-2|≥x在x∈(-∞,2]上恒成立
等价于e^x-x≥a(x-2)在x∈(-∞,2]上恒成立
当x=2时,不等式化为e²-2≥a(2-2)=0
即∀x∈R,不等式f(x)≥x恒成立,
当x∈(-∞,2)时,不等式可化为a≥(e^x-x)/(x-2)=[(e^x-2)/(x-2)]-1

设g(x)=[(e^x-2)/(x-2)]-1在x∈(-∞,2)内取得最大值a0,
记k=(e^x-2)/(x-2),则k可以看作是定点A(2,2) 到函数y=e^x,
x∈(-∞,2)上的点P(x,e^x)的连线的斜率,由几何意义知,当直线AP
与曲线y=e^x,x∈(-∞,2)相切时k取最大值,切点记为(x0,e^x0),
则a0=g(x0)=[(e^x0-2)/(x0-2)]-1
∵ y'=e^x,由导数的几何意义,e^x0=(e^x0-2)/(x0-2)
即x0e^x0-3e^x0+2=0
设h(x)=xe^x-3e^x+2,则h'(x)=xe^x-2e^x=(x-2)e^x<0,x∈(-∞,2)
∴ h(x)在x∈(-∞,2)内连续且单调递减
又∵ h(0)=0·e^0-3e^0+2=-1<0,
h(-ln2)=(-ln2)e^(-ln2)-3e^(-ln2)+2=(1-ln2)/2<0
∴ 由根的存在性定理,x0∈(-ln2,0),e^x0∈(1/2,1)
a0=g(x0)=[(e^x0-2)/(x0-2)]-1=e^x0-1∈(-1/2,0)
综上可知,符合题设的a的取值范围为a∈[a0,+∞),且-1/2<a0<0。
ps:希望“雨的眼泪陈”同学仔细检查,看有无漏洞,不足之处请指正,可追问!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式