已知a∈R,函数f(x)=e^x+a|x-2|.

(1)当0<a≤e时,若函数f(x)在区间[1,+∞)上的最小值为e+1,求a的值;(2)设实数a使得关于x的不等式f(x)≥x在区间(-∞,2]上恒成立,求证:这样的实... (1)当0<a≤e时,若函数f(x)在区间[1,+∞)上的最小值为e+1,求a的值;
(2)设实数a使得关于x的不等式f(x)≥x在区间(-∞,2]上恒成立,求证:这样的实数a的取值集合为一个区间[a0,+∞),且-1/2<a0<0.
展开
 我来答
adrxy
2012-10-10 · TA获得超过2595个赞
知道小有建树答主
回答量:716
采纳率:100%
帮助的人:245万
展开全部
(1)解:当x∈[1,2)时,f(x)=e^x+a(2-x), 则f'(x)=e^x-a
∵ 0<a≤e
∴ f'(x)≥f'(1)=e-a≥0
∴ f(x)在x∈[1,2)上递增,f(x)最小值=f(1)=e+a
 当x∈[2,+∞)时,f(x)=e^x+a(x-2),则f'(x)=e^x+a
∵ 0<a≤e
∴ f'(x)≥f'(2)=e²+a>0
  ∴ f(x)在x∈[2,+∞)上递增,f(x)最小值= f(2)=e²+a(2-2)=e²
 综上在x∈[1,+∞)上,f(x)最小值=f(1)=e+a=e+1,即有a=1.
(2)证:不等式f(x))=e^x+a|x-2|≥x在x∈(-∞,2]上恒成立
等价于e^x-x≥a(x-2)在x∈(-∞,2]上恒成立
当x=2时,不等式化为e²-2≥a(2-2)=0
即∀x∈R,不等式f(x)≥x恒成立,
当x∈(-∞,2)时,不等式可化为a≥(e^x-x)/(x-2)=[(e^x-2)/(x-2)]-1

设g(x)=[(e^x-2)/(x-2)]-1在x∈(-∞,2)内取得最大值a0,
记k=(e^x-2)/(x-2),则k可以看作是定点A(2,2) 到函数y=e^x,
x∈(-∞,2)上的点P(x,e^x)的连线的斜率,由几何意义知,当直线AP
与曲线y=e^x,x∈(-∞,2)相切时k取最大值,切点记为(x0,e^x0),
则a0=g(x0)=[(e^x0-2)/(x0-2)]-1
∵ y'=e^x,由导数的几何意义,e^x0=(e^x0-2)/(x0-2)
即x0e^x0-3e^x0+2=0
设h(x)=xe^x-3e^x+2,则h'(x)=xe^x-2e^x=(x-2)e^x<0,x∈(-∞,2)
∴ h(x)在x∈(-∞,2)内连续且单调递减
又∵ h(0)=0·e^0-3e^0+2=-1<0,
h(-ln2)=(-ln2)e^(-ln2)-3e^(-ln2)+2=(1-ln2)/2<0
∴ 由根的存在性定理,x0∈(-ln2,0),e^x0∈(1/2,1)
a0=g(x0)=[(e^x0-2)/(x0-2)]-1=e^x0-1∈(-1/2,0)
综上可知,符合题设的a的取值范围为a∈[a0,+∞),且-1/2<a0<0。
ps:希望“雨的眼泪陈”同学仔细检查,看有无漏洞,不足之处请指正,可追问!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式