∫arcsinx*arccosxdx永不分积分法怎么求
2个回答
展开全部
先化简t=arcsin(x) x=sin(t)
arccos(x)=π/2 -t
∫t(π/2 -t)dsin(t)=t(π/2 -t)sin(t) -∫ sint d(t(π/2 -t))
=t(π/2 -t)sin(t) -∫ (π/2-2t)sint dt
=t(π/2 -t)sin(t) +∫ (π/2-2t) dcos(t)
=t(π/2 -t)sin(t) + (π/2-2t) cos(t)-∫cos(t)d (π/2-2t)
=t(π/2 -t)sin(t) + (π/2-2t) cos(t)+∫2cos(t)dt
=t(π/2 -t)sin(t) + (π/2-2t) cos(t)+2sin(t)+C
=arcsin(x)arccos(x)x+(arccos(x)-arcsin(x))√(1-x²)+2arcsin(x)+C
arccos(x)=π/2 -t
∫t(π/2 -t)dsin(t)=t(π/2 -t)sin(t) -∫ sint d(t(π/2 -t))
=t(π/2 -t)sin(t) -∫ (π/2-2t)sint dt
=t(π/2 -t)sin(t) +∫ (π/2-2t) dcos(t)
=t(π/2 -t)sin(t) + (π/2-2t) cos(t)-∫cos(t)d (π/2-2t)
=t(π/2 -t)sin(t) + (π/2-2t) cos(t)+∫2cos(t)dt
=t(π/2 -t)sin(t) + (π/2-2t) cos(t)+2sin(t)+C
=arcsin(x)arccos(x)x+(arccos(x)-arcsin(x))√(1-x²)+2arcsin(x)+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询