一个关于偏导数的高数题
1个回答
展开全部
x-az=f(y-bz)
两边对x求偏导得:
1-a∂z/∂x=(-b∂z/∂x)f',解得:∂z/∂x=1/(a-bf')
两边对y求偏导得:
-a∂z/∂y=(1-b∂z/∂y)f',解得:∂z/∂y=f'/(bf'-a)
因此:
a∂z/∂x+b∂z/∂y
=a/(a-bf') + bf'/(bf'-a)
=a/(a-bf') - bf'/(a-bf')
=1
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
两边对x求偏导得:
1-a∂z/∂x=(-b∂z/∂x)f',解得:∂z/∂x=1/(a-bf')
两边对y求偏导得:
-a∂z/∂y=(1-b∂z/∂y)f',解得:∂z/∂y=f'/(bf'-a)
因此:
a∂z/∂x+b∂z/∂y
=a/(a-bf') + bf'/(bf'-a)
=a/(a-bf') - bf'/(a-bf')
=1
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |