高数三个题。求极限,l要求解题过程
3个回答
展开全部
解:(1)原式=lim(x->0){[-(1/2)(-sinx/√cosx)]/(2x)} (0/0型极限,应用罗比达法则)
=(1/4)lim(x->0)[(sinx/x)*(1/√cosx)]
=(1/4)*[lim(x->0)(sinx/x)]*[lim(x->0)(1/√cosx)]
=(1/4)*1*1 (应用重要极限lim(z->0)(sinz/z)=1)
=1/4;
(2)原式=lim(x->a)(cosx) (0/0型极限,应用罗比达法则)
=cosa;
(3)原式=lim(x->∞){[1+(-5)/(x+1)]^[((x+1)/(-5))*(-5(2x-1)/(x+1))]}
=【lim(x->∞){[1+(-5)/(x+1)]^[((x+1)/(-5))}】^{lim(x->∞)[-5(2x-1)/(x+1)]}
=e^{lim(x->∞)[-5(2-1/x)/(1+1/x)]} (应用重要极限lim(z->∞)[(1+1/z)^z]=e)
=e^[-5(2-0)/(1+0)]
=e^(-10)。
=(1/4)lim(x->0)[(sinx/x)*(1/√cosx)]
=(1/4)*[lim(x->0)(sinx/x)]*[lim(x->0)(1/√cosx)]
=(1/4)*1*1 (应用重要极限lim(z->0)(sinz/z)=1)
=1/4;
(2)原式=lim(x->a)(cosx) (0/0型极限,应用罗比达法则)
=cosa;
(3)原式=lim(x->∞){[1+(-5)/(x+1)]^[((x+1)/(-5))*(-5(2x-1)/(x+1))]}
=【lim(x->∞){[1+(-5)/(x+1)]^[((x+1)/(-5))}】^{lim(x->∞)[-5(2x-1)/(x+1)]}
=e^{lim(x->∞)[-5(2-1/x)/(1+1/x)]} (应用重要极限lim(z->∞)[(1+1/z)^z]=e)
=e^[-5(2-0)/(1+0)]
=e^(-10)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |