关于大一高数的一道题
arcsin(sinA+sinB)+arcsin(sinA-sinB)=2分之派则sin²A+sin²B=?...
arcsin(sinA+sinB)+arcsin(sinA-sinB)=2分之派
则 sin²A+sin²B=? 展开
则 sin²A+sin²B=? 展开
展开全部
arcsin(sinA+sinB)=α,
arcsin(sinA-sinB)=β
则α+ β=π/2,
sinA+sinB=sinα, sinA-sinB=sinβ
所以,sinA=(sinα+sinβ)/2, sinB=(sinα-sinβ)/2
sin²A+sin²B =(sinα+sinβ)^2/4+(sinα-sinβ)^2/4
=(sin^2α+sin^2β)/2
=(sin^2α+sin^2(π/2-α))/2
=(sin^2α+cos^2α)/2=1/2
arcsin(sinA-sinB)=β
则α+ β=π/2,
sinA+sinB=sinα, sinA-sinB=sinβ
所以,sinA=(sinα+sinβ)/2, sinB=(sinα-sinβ)/2
sin²A+sin²B =(sinα+sinβ)^2/4+(sinα-sinβ)^2/4
=(sin^2α+sin^2β)/2
=(sin^2α+sin^2(π/2-α))/2
=(sin^2α+cos^2α)/2=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
arcsin(sinA+sinB)=π/2-arcsin(sinA-sinB)
sin[arcsin(sinA+sinB)]=sin[π/2-arcsin(sinA-sinB)]
sin[arcsin(sinA+sinB)]=cos[arcsin(sinA-sinB)]
sinA+sinB=√[1-(sinA-sinB)^2]
(sinA+sinB)^2=1-(sinA-sinB)^2
sin^2A+2sinAsinB+sin^2B=1-sin^2A+2sinAsinB-sin^2B
2(sin^2A+sin^2B)=1
sin^2A+sin^2B=1/2
sin[arcsin(sinA+sinB)]=sin[π/2-arcsin(sinA-sinB)]
sin[arcsin(sinA+sinB)]=cos[arcsin(sinA-sinB)]
sinA+sinB=√[1-(sinA-sinB)^2]
(sinA+sinB)^2=1-(sinA-sinB)^2
sin^2A+2sinAsinB+sin^2B=1-sin^2A+2sinAsinB-sin^2B
2(sin^2A+sin^2B)=1
sin^2A+sin^2B=1/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
arcsin(sinA+sinB)+arcsin(sinA-sinB)=π/2
arcsin(sinA+sinB)=π/2-arcsin(sinA-sinB)
sin[arcsin(sinA+sinB)]=sin[π/2-arcsin(sinA-sinB)]
sinA+sinB=cos[arcsin(sinA-sinB)]
(sinA+sinB)^2={cos[arcsin(sinA-sinB)]}^2
(sinA+sinB)^2=1-{sin[arcsin(sinA-sinB)]}^2
(sinA+sinB)^2=1-(sinA-sinB)^2
(sinA+sinB)^2+(sinA-sinB)^2=1
sin²A+sin²B=1/2
arcsin(sinA+sinB)=π/2-arcsin(sinA-sinB)
sin[arcsin(sinA+sinB)]=sin[π/2-arcsin(sinA-sinB)]
sinA+sinB=cos[arcsin(sinA-sinB)]
(sinA+sinB)^2={cos[arcsin(sinA-sinB)]}^2
(sinA+sinB)^2=1-{sin[arcsin(sinA-sinB)]}^2
(sinA+sinB)^2=1-(sinA-sinB)^2
(sinA+sinB)^2+(sinA-sinB)^2=1
sin²A+sin²B=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询