高考数列问题如何复习?

 我来答
李睿智love
2012-10-11 · TA获得超过158个赞
知道答主
回答量:233
采纳率:0%
帮助的人:88万
展开全部
2012年高考越来越近,各位高三考生们你们准备好应对接下来的一模、二模考试了吗?每一年的高考总会有很多人载在数学上,那么针对高考数学现在我们应该如何复习呢?怎样才能使数学成绩在一模考试中有所提高呢?看看老师怎么说吧!
1、你究竟练熟了吗?
年年都有一大票人栽在高考数学上,究其原因,不是其不会做,而是其做题做不精,做题做不熟。其实高考数学有一个天大的误区,就是很多人认为数学考不好是因为自己不会做,这是件非常可笑的事情,不信你每回卷子发下来之后,你会发现你考试的最大的敌人是会做的题没做对,会做的题没练熟。数学最大的忌讳就是自己认为会做了,在平时的习题中觉得有解题思路的题就跳过去了,殊不知你其实是一瓶子不满,半瓶子晃荡。一旦真上战场,仅仅会做是不够看的,关键是看谁做得熟。
2、把握中等题,碾压简单题
 现在数学不到120分的都醒醒吧,不要再沉浸在“高精尖”的“创新题”中了,你之所以没有上120分,不是你不会做导致的,更多的是你压根就没把握好中等难度的题,怎样把握住中等难度的习题?最最简单的就是通过经典题型牢记解题方法,通过解题方法干掉一票习题。大家都知道记单词要放在句子里,文章里记忆,那么数学也是如此,若是你心中不能熟记一些经典习题,那么你的数学肯定难以拔尖。什么?你问我什么是经典习题?我建议你就把历年高考题和平时的一模、二模题搞熟就可以了。
3、重在基础
数学是一门极其重视基础的学科,切勿好高骛远。我最多说的一句话就是数学素养,这个和文学素养是一个东西,很多家长甚至包括一部分老师都认为数学是可以“突击”上来的,这个思想是极不靠谱的,还是那句话,把题给你整会了是件非常容易的事情,但是要是把你整对了,这就是需要大量的练习与积累了,目前,只要是数学稳定在100分以上的孩子都要重视基础起来,一步步走踏实了比什么都强。大家可以好好看看高考考纲,一个知识点一个的对,迅速找出你的基础薄弱点并迅速歼灭之。一旦你的数学素养积累上去,那就什么创新题与难题都不怕了 高考一轮复习必须知晓的六大数学锦囊
  ——集合与常用逻辑用语、函数与导数篇
 高考数学答题技巧一:判断命题真假的方法
  判断四种形式的命题真假的基本方法是先判断原命题的真假,再判断逆命题的真假,然后根据等价关系确定否命题和逆否命题的真假.如果原命题的真假不好判断,那就首先判断其逆否命题的真假。

数学答题技巧三:命题的否定和一个命题的逆否命题的区别
  命题的否定和一个命题的逆否命题是不同的,命题的否定是否定这个命题的结论,在这个命题与其否定这两个命题中,一定是一个真命题、一个假命题,但一个命题的否命题只是相对于原命题得到的一个形式上的命题,这两个命题之间的真假关系没有必然的联系.
高考数学答题技巧四:对应、映射和函数的关系巧记忆
  对应、映射和函数三个概念的内涵逐步丰富.对应中的唯一性形成映射,映射中的非空
  数集形成函数;也就是说函数是一种特殊的映射,而映射又是一种特殊的对应.
高考数学答题技巧五:函数解析式的求法
  函数解析式的问题是高考的命题热点,其求解方法很多,最常用的有以下几种:①换元法和配凑法;②待定系数法:适用于已知函数模型(如指数函数、二次函数等)和模型满足的条件下解析式,一般先设出函数的解析式,然后再根据题设条件待定系数;③解方程组法;④函数的性质法,在求某些函数解析式时,只给出了部分条件(如函数的定义域、经过某些特殊点、部分关系式、部分图象特征等)这类问题具有抽象性、综合性、和技巧性等特点,需要利用函数的性质来解; ⑤赋值法:所给函数有两个变量时,可对这两个变量赋予特殊数值代入,或给两个变量赋予一定的关系代入,再用已知条件,可求出未知函数,至于赋予什么特殊值,应根据题目特征而定。
高考数学答题技巧六:必须要掌握的解答函数应用题的步骤
  1. 阅读理解:即读懂题目中的文字叙述所反映的实际背景,领悟其中的数学本质,弄清题目中出现的量及其数学含义。
  2.分析建模:根据各个量的关系,建立数学模型(函数模型、方程模型、不等式模型、数列模型等) 将实际问题转化成数学问题。
  3.数学求解:选用相应的数学知识和数学方法加以解决。
  4.还原总结:把计算获得的结果还原到实际问题中去解释实际问题,即对实际问题进行总结作答
一、《集合与函数》
  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
  二、《三角函数》
  三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
  中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
  变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
  1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;
  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
  三、《不等式》
  解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
  高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
  证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
  直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
  还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
  四、《数列》
  等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
  数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
  取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
  一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
  首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
  五、《复数》
  虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
  对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
  箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
  代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
  一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
  利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
  减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
  三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
  辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
  两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
  六、《排列、组合、二项式定理》
  加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
  两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
  排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
  不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
  关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
  七、《立体几何》
  点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
  垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
  立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
  异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
  八、《平面解析几何》
  有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
  笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
  两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
  三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
  四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
  解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
数学 必修11. 集合
  (约4课时)
  (1)集合的含义与表示
  ①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
  ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
  (2)集合间的基本关系
  ①理解集合之间包含与相等的含义,能识别给定集合的子集。
  ②在具体情境中,了解全集与空集的含义。
  (3)集合的基本运算
  ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
  ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
  ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2. 函数概念与基本初等函数I
  (约32课时)
  (1)函数
  ①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
  ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
  ③了解简单的分段函数,并能简单应用。
  ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
  ⑤学会运用函数图象理解和研究函数的性质(参见例1)。
  (2)指数函数
  ①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
  ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
  ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
  ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
  (3)对数函数
  ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
  ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
  ③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
  (4)幂函数
  通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
  (5)函数与方程
  ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
  ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
  (6)函数模型及其应用
  ①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
  ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
  (7)实习作业
  根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
数学 必修21. 立体几何初步
  (约18课时)
  (1)空间几何体
  ①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
  ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。
  ③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。
  ④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
  ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
  (2)点、线、面之间的位置关系
  ①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
  ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
  ◆公理2:过不在一条直线上的三点,有且只有一个平面。
  ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
  ◆公理4:平行于同一条直线的两条直线平行。
  ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。
  ②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。
  操作确认,归纳出以下判定定理。
  ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
  ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
  ◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
  ◆一个平面过另一个平面的垂线,则两个平面垂直。
  操作确认,归纳出以下性质定理,并加以证明。
  ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。
  ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。
  ◆垂直于同一个平面的两条直线平行。
  ◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
  ③能运用已获得的结论证明一些空间位置关系的简单命题。
2. 平面解析几何初步
  (约18课时)
  (1)直线与方程
  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。
  ③能根据斜率判定两条直线平行或垂直。
  ④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。
  ⑤能用解方程组的方法求两直线的交点坐标。
  ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
  (2)圆与方程
  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。
  ③能用直线和圆的方程解决一些简单的问题。
  (3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。
  (4)空间直角坐标系
  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。
  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
数学 必修31. 算法初步
  (约12课时)
  (1)算法的含义、程序框图
  ①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
  ②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
  (2)基本算法语句:经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
  (3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
2. 统计
  (约16课时)
  (1)随机抽样
  ①能从现实生活或其他学科中提出具有一定价值的统计问题。
  ②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
  ③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
  ④能通过试验、查阅资料、设计调查问卷等方法收集数据。
  (2)用样本估计总体
  ①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会它们各自的特点。
  ②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。
  ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。
  ④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
  ⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。
  ⑥形成对数据处理过程进行初步评价的意识。
  (3)变量的相关性
  ①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
  ②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(参见例2)。
3. 概率
  (约8课时)
  (1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
  (2)通过实例,了解两个互斥事件的概率加法公式。
  (3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
  (4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
  (5)通过阅读材料,了解人类认识随机现象的过程。
爱晚风林亭
2015-10-22 · TA获得超过1万个赞
知道大有可为答主
回答量:2881
采纳率:93%
帮助的人:352万
展开全部
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1。在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2。在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3。培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
这是一个数列的口诀,对学习数列有所帮助:
  等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
  数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
  取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
  一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
  首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
feilong820129
2012-10-10
知道答主
回答量:8
采纳率:0%
帮助的人:1.2万
展开全部
最好先把知识点总结一下,然后再做一些,再做一些模拟题就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黑白式格調
2012-10-10
知道答主
回答量:69
采纳率:0%
帮助的人:20.3万
展开全部
多做题,看概念
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式