已知a,b,c分别为三角形ABC三个内角A,B,C的对边,c=根号asinC-ccosA.(1)求A.(2)若a=2,三角形ABC的...
已知a,b,c分别为三角形ABC三个内角A,B,C的对边,c=根号asinC-ccosA.(1)求A.(2)若a=2,三角形ABC的面积为根号3,求b,c。...
已知a,b,c分别为三角形ABC三个内角A,B,C的对边,c=根号asinC-ccosA.(1)求A.(2)若a=2,三角形ABC的面积为根号3,求b,c。
展开
3个回答
展开全部
(1)
∵c=√3asinC-ccosA
根据正弦定理
a=2RsinA,b=2RsinB, c=2RsinC,
∴sinC=√3sinAsinC√-sinCcosA
∵sinC>0,约去得:
√3sinA-cosA=1
两边除以2
√3/2*sinA-1/2*cosA=1/2
∴sin(A-π/6)=1/2
∵A-π/6∈(-π/6,5π/6)
∴A-π/6=π/6
∴A=π/3
(2)
a=2,A=π/3
根据余弦定理:
a²=b²+c²-2bccosA
∴4=b²+c²-bc
∵ΔABC的面积为根号3
∴1/2*bcsinπ/3=√3
∴bc=4
∴b²+c²=4+bc=8
∴(b-c)²=b²+c²-2bc=0
∴b=c=2
∵c=√3asinC-ccosA
根据正弦定理
a=2RsinA,b=2RsinB, c=2RsinC,
∴sinC=√3sinAsinC√-sinCcosA
∵sinC>0,约去得:
√3sinA-cosA=1
两边除以2
√3/2*sinA-1/2*cosA=1/2
∴sin(A-π/6)=1/2
∵A-π/6∈(-π/6,5π/6)
∴A-π/6=π/6
∴A=π/3
(2)
a=2,A=π/3
根据余弦定理:
a²=b²+c²-2bccosA
∴4=b²+c²-bc
∵ΔABC的面积为根号3
∴1/2*bcsinπ/3=√3
∴bc=4
∴b²+c²=4+bc=8
∴(b-c)²=b²+c²-2bc=0
∴b=c=2
展开全部
sinc=sinasinc-sinccosa sina-cosa=1 解得A=90度 根号3=0.5bc b方+c方=2的平方 ,题写错了面积应该为二分之根号3,b=1,c=genhao3 或者b=genhao3,c=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为sinC/c=cosA/a,则c^2=csinA-ccosA不知道是否题有错误,如果c=1或者没有根号,则sin(A+45°)=1,则A=90°
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询