已知等比数列{an}的公比q= -1/2 (1)若a3=1/4 求数列an前n项的和 (2)证明 对任意k∈N*,Sk,Sk+2,Sk+1

已知等比数列{an}的公比q=-1/2(1)若a3=1/4求数列an前n项的和(2)证明对任意k∈N*,Sk,Sk+2,Sk+1,成等差数列... 已知等比数列{an}的公比q= -1/2 (1)若a3=1/4 求数列an前n项的和 (2)证明 对任意k∈N*,Sk,Sk+2,Sk+1,成等差数列 展开
II洛丽塔II
2012-10-12 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2249
采纳率:80%
帮助的人:907万
展开全部
(1)解∵q= -1/2,a3=1/4
  由(a1)q²=a3得:(a1)(-1/2)²=1/4
  ∴(a1)=1
  ∴数列an前n项的和
  Sn=[(a1)(1-qⁿ)]/(1-q)
  ={1×[1-(-1/2)ⁿ]}/[1-(-1/2)]
  =[2-2·(-1/2)ⁿ]/3
(2)证明:∵k∈N*
  ∴2[S(k+2)]-{(Sk) +[S(k+1)]}
  =2[S(k+2)]-(Sk) -[S(k+1)]
  =2{(a1)[1-q^(k+2)]}/(1-q)-{(a1)[1-(q^k)]}/(1-q)-{(a1)[1-q^(k+1)]}/(1-q)
  =[(a1)(q^k)]/(1-q) · (2q²-1-q) ①
  ∵q=-1/2
  ∴2q²-1-q=2×(-1/2)²-1-(-1/2)=1/2-1+1/2=0
  ∴ ①式=0
  ∴2[S(k+2)]-{(Sk) +[S(k+1)]}=0
  ∴S(k+2)、(Sk) 、S(k+1),成等差数列
倒数第一啊
2012-10-12
知道答主
回答量:67
采纳率:0%
帮助的人:27.7万
展开全部
因为a3=1/4,所以a1=1
∴Sn=(a1(1-q^n))/(1-q)
∵a1=1,q= -1/2 ∴Sn=2*(1-(1/2)^n)

若 对任意k∈N*,Sk,Sk+2,Sk+1所以2*Sk+2=Sk+Sk+1
所以:代入Sn得:4-4/(2^(n+2))=2-2/(2^(n+1))+2-2/(2^n)
整理得:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式