英语导数问题求翻译求解答

nsjiang1
2012-10-12 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3879万
展开全部
已知f(x)=1/(2x+2)^2, 用导数的定义求f'(a)
1.经简化后,有
(f(x)-f(a))/(x-a)=F(x,a)/[(2x+2)^2(2a+2)^2], F(x,a)为某个多项式。这个多项式是?
解:(f(x)-f(a))/(x-a)=[1/(2x+2)^2-1/(2a+2)^2]/(x-a)
=-(4a+4x+8)/[(2x+2)^2(2a+2)^2],
F(x,a)=(-1)(4a+4x+8)

2计算f'(a)=lim(f(x)-f(a))/(x-a)
解:f'(a)=lim(f(x)-f(a))/(x-a)
=lim(-1)(4a+4x+8)/[(2x+2)^2(2a+2)^2]
=-1/[2(a+1)^3]
3112287k5
2012-10-13
知道答主
回答量:70
采纳率:0%
帮助的人:21.3万
展开全部
已知f(x)=1/(2x+2)^2, 用导数的定义求f'(a)
1.经简化后,有
(f(x)-f(a))/(x-a)=F(x,a)/[(2x+2)^2(2a+2)^2], F(x,a)为某个多项式。这个多项式是?
解:(f(x)-f(a))/(x-a)=[1/(2x+2)^2-1/(2a+2)^2]/(x-a)
=-(4a+4x+8)/[(2x+2)^2(2a+2)^2],
F(x,a)=(-1)(4a+4x+8)

2计算f'(a)=lim(f(x)-f(a))/(x-a)
解:f'(a)=lim(f(x)-f(a))/(x-a)
=lim(-1)(4a+4x+8)/[(2x+2)^2(2a+2)^2]
=-1/[2(a+1)^3] 赞同1| 评论(1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式