π是怎么得来的?

侨美如天蔚
2019-01-23 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:35%
帮助的人:597万
展开全部
圆周率就是圆周长与直径的比率,通常以希腊字母π来表示此符号
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
小度的远房大哥
2012-10-12 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2454
采纳率:100%
帮助的人:694万
展开全部
早在一千多年前我国著名科学家祖冲就发现了圆周率π
即:圆的周长:圆的直径=π≈3.14
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
langzixiaofei
2012-10-12 · 超过17用户采纳过TA的回答
知道答主
回答量:80
采纳率:0%
帮助的人:47.9万
展开全部
圆周长和直径的比值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
懒树无叶
推荐于2016-12-01
知道答主
回答量:62
采纳率:0%
帮助的人:24.8万
展开全部
π是一个在数学及物理学领域普遍存在的数学常数。大写∏,小写π(英语名称:Pi,汉语名称:派 ),是第十六个希腊字母。
数学中连乘积的算子。小写字母:π。数学常数圆周率,圆周率是指平面上圆的周长与直径之比。(其值前七位为3. 1415926,更详细的数值请查看词条圆周率)。函数(数学)π(n)为不大于n的质数个数 。粒子物理学中的π介子π键,一类原子轨道“肩并肩”重叠形成的化学键。微观经济学中的利润。经济学中的通货膨胀率。西里尔字母的 П 及拉丁字母的 P 都是从 Pi 变来。
摘自百度百科。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阿亚歌者D1fe6
2012-10-12 · TA获得超过629个赞
知道答主
回答量:16
采纳率:100%
帮助的人:10.5万
展开全部
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。
  十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。
  进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。
  历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。
  把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
  现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
计算方法

  古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。
  马青公式
  π=16arctan1/5-4arctan1/239
  这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
  还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。
  拉马努金公式
  1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。
  1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是:AGM(Arithmetic-Geometric Mean)算法。
  高斯-勒让德公式

  这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。
  波尔文四次迭代式
  这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表的。
  bailey-borwein-plouffe算法
  这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发

丘德诺夫斯基公式
表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。
  丘德诺夫斯基公式
  这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本:
  莱布尼茨公式
  π/4=1-1/3+1/5-1/7+1/9-1/11+……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式