怎么看标准正态分布曲线下的面积表
一、正态分布曲线下的面积分布规律为:无论μ,σ取什么值,正态曲线与横轴间的面积总等于1。在μ±σ范围内,即μ-σ~μ+σ范围内曲线下的面积等于0.6827
二、所谓的正态分布表都是标准正态分布表(n(0,1),通过查找实数x的位置,从而得到p(z<=x)。表的纵向代表x的整数部分和小数点后第一位,横向代表x的小数点后第二位,然后就找到了x的位置。
三、将未知量Z对应的列上的数 与 行所对应的数字 结合 查表定位,例如 要查Z=1.96的标准正态分布表 。首先 在Z下面对应的数找到1.9, 在Z右边的行中找到6,这两个数所对应的值为 0.9750 即为所查的值
对于标准正态分布来说,存在一张表,称为:标准正态分布表如下图示
扩展资料
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
(参考资料 百度百科 正态分布)
2024-11-13 广告
一、正态分布曲线下的面积分布规律为:无论μ,σ取什么值,正态曲线与横轴间的面积总等于1。在μ±σ范围内,即μ-σ~μ+σ范围内曲线下的面积等于0.6827
二、所谓的正态分布表都是标准正态分布表(n(0,1),通过查找实数x的位置,从而得到p(z<=x)。表的纵向代表x的整数部分和小数点后第一位,横向代表x的小数点后第二位,然后就找到了x的位置。
三、将未知量Z对应的列上的数 与 行所对应的数字结合,查表定位,例如 要查Z=1.96的标准正态分布表 。首先 在Z下面对应的数找到1.9, 在Z右边的行中找到6,这两个数所对应的值为 0.9750 即为所查的值。
扩展资料
正态分布的应用
1、估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。
2、制定参考值范围
(1)正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。
(2)百分位数法 常用于偏态分布的指标。表3-1中两种方法的单双侧界值都应熟练掌握。
3、质量控制:为了控制实验中的测量(或实验)误差,常以 作为上、下警戒值,以 作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。
4、正态分布是许多统计方法的理论基础。检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。
参考资料:百度百科正态分布
对正态分布密度函数下进行积分就行了,对整个实数域积分的结果肯定等于1,而对任意有界区域积分的结果一般情况下只能进行近似的数值计算,而不能给出解析表达式。
拓展资料:
图形特征
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
参考资料:百度百科——正态分布曲线
答案如下:
1、对正态分布密度函数下进行积分就行了,对整个实数域积分的结果肯定等于1,而对任意有界区域积分的结果一般情况下只能进行近似的数值计算,而不能给出解析表达式。
2、明白纵轴是u值的整数部分和小数点后的十分位,横轴表示小数点后的百分位数。
3、典型的u=1.96,找到纵轴-1.9,结合横轴0.06,确定Φ(u)=0.025。1-0.025x2=0.95,即95%的曲线面积对应的u上下限是(-1.96,1.96)。
4、标准正态分布曲线为:
拓展资料
(1)正态分布序贯概率比检验(sequential probabil-ity ratio test for normal distribution)总体为正态分布时的序贯概率比检验.设(X‑XZ,...)为抽自正态分布N(B,1>的样本序列,考虑假设Ho: B=Ba;H, ; B -- B, , B, > Bo。
(2)序贯概率比检验是数理统计学的一个分支,其名称源出于亚伯拉罕·瓦尔德在1947年发表的一本同名著作,它研究的对象是所谓“序贯抽样方案”,及如何用这种抽样方案得到的样本去作统计推断。
(资料来源:百度百科:正态分布序贯概率比检验)
1、对正态分布密度函数下进行积分就行了,对整个实数域积分的结果肯定等于1,而对任意有界区域积分的结果一般情况下只能进行近似的数值计算,而不能给出解析表达式。
2、明白纵轴是u值的整数部分和小数点后的十分位,横轴表示小数点后的百分位数。
3、典型的u=1.96,找到纵轴-1.9,结合横轴0.06,确定Φ(u)=0.025。1-0.025x2=0.95,即95%的曲线面积对应的u上下限是(-1.96,1.96)。
4、标准正态分布曲线为
对于标准正态分布来说,存在一张表,称为:标准正态分布表如下图示
拓展资料:
标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。
特点:
密度函数关于平均值对称。
平均值与它的众数(statistical mode)以及中位数(median)同一数值。
函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
95.449974%的面积在平均数左右两个标准差的范围内。
99.730020%的面积在平均数左右三个标准差的范围内。
99.993666%的面积在平均数左右四个标准差的范围内。
函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。
深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。
在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”。
参考资料:百度百科:标准正态分布