高阶导数

已知dx/dy=1/y'导出d2x/dy2=-y''/(y’)3这个问题,如果左右同时求导,即可,但是球的是X对于Y的而且导数,在结果上如果把Y当成自变量后,分母上会少个... 已知dx/dy=1/y' 导出d2x/dy2= -y''/(y’)3 这个问题,如果左右同时求导,即可,但是球的是X对于Y的而且导数,在结果上如果把Y当成自变量后,分母上会少个y‘ 计算上在哪里出现了问题? 展开
hhlcai
推荐于2017-11-25 · TA获得超过7031个赞
知道大有可为答主
回答量:1057
采纳率:100%
帮助的人:444万
展开全部
因为y'表示y对x的导数,所以是x的函数
将dx/dy看成是x的函数,则d²x/dy²表示dx/dy关于y的导数
利用复合函数求导法则,
d²x/dy²= d(dx/dy)/dy
=d(dx/dy)/dx *(dx/dy)
=d(1/y')/dx * (1/y')
=-y''/(y')³
你的方法中错误的地方在于把dx/dy当成是y的函数了,里面的y',y''均为y关于x的一阶,二阶导数,是x的函数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式