已知集合A={x\x2-4ax+2a+6=0},B={x\x<0},若A交B不等于空集,求a的取值范围。 20
1个回答
展开全部
A交B不等于空集
所以A的二次方程必有一个负根
只需要小的那个根小于0即可,大的那个无所谓
所以联立
Δ=(-4a)^2-4(2a+6)=16a^2-8a-24>=0
(4a-根号Δ)/2<0
即
2a^2-a-3>=0, 解得(2a-3)(a+1)>=0, a>=3/2或者a<=-1
2a<根号(4a^2-2a-6),
1)a>=3/2, 4a^2<4a^2-2a-6, a<-3矛盾
2)a<=-1,恒成立因为2a是负数,根号是非负数
所以答案是a<=-1
所以A的二次方程必有一个负根
只需要小的那个根小于0即可,大的那个无所谓
所以联立
Δ=(-4a)^2-4(2a+6)=16a^2-8a-24>=0
(4a-根号Δ)/2<0
即
2a^2-a-3>=0, 解得(2a-3)(a+1)>=0, a>=3/2或者a<=-1
2a<根号(4a^2-2a-6),
1)a>=3/2, 4a^2<4a^2-2a-6, a<-3矛盾
2)a<=-1,恒成立因为2a是负数,根号是非负数
所以答案是a<=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询