求解高中数列题
等差数列{An}的各项均为正数,a1=3,前n项和为Sn,{Bn}为等比数列,b1=1,且b2s2=64,b3s3=960.(1)求通项An,Bn。(2)求和1/s1+1...
等差数列{An}的各项均为正数,a1=3,前n项和为Sn,{Bn}为等比数列,b1=1,且b2s2=64,b3s3=960.(1)求通项An,Bn。(2)求和1/s1+1/s2+1/s3+……+1/sn怎么做呀
展开
展开全部
(1)
设{an}的公差为d,{bn}的公比为q
∴an=3+(n-1)d,bn=q^(n-1)
∵b2s2=64
∴q(a1+a2)=64
==>(6+d)*q=64 ①
∵ b3s3=960
∴q²(a1+a2+a3)=960
==> (9+3d)*q²=960
==> (3+d)*q²=320 ②
①²/②:
(6+d)²/(3+d)=64²/320=64/5
==>5( 36+12d+d²)=192+64d
==>5d²-4d-12=0
==>d=2或d=-6/5(舍去)
∴q=8
∴an=2n+1,bn=8^(n-1)
(2)
Sn=(3+2n+1)*n/2=n(n+2)
∴1/Sn=1/[n(n+2)]
=1/2[1/n-1/(n+2)]
∴1/s1+1/s2+1/s3+……+1/sn
=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+........+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
设{an}的公差为d,{bn}的公比为q
∴an=3+(n-1)d,bn=q^(n-1)
∵b2s2=64
∴q(a1+a2)=64
==>(6+d)*q=64 ①
∵ b3s3=960
∴q²(a1+a2+a3)=960
==> (9+3d)*q²=960
==> (3+d)*q²=320 ②
①²/②:
(6+d)²/(3+d)=64²/320=64/5
==>5( 36+12d+d²)=192+64d
==>5d²-4d-12=0
==>d=2或d=-6/5(舍去)
∴q=8
∴an=2n+1,bn=8^(n-1)
(2)
Sn=(3+2n+1)*n/2=n(n+2)
∴1/Sn=1/[n(n+2)]
=1/2[1/n-1/(n+2)]
∴1/s1+1/s2+1/s3+……+1/sn
=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+........+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/[2(n+1)(n+2)]
展开全部
(1)根据题意:设an=a1+(n-1)d,bn=b1*q^(n-1)
可得方程组
(3+3+d)*q=64
(3+3+d+3+2d)*q^2=960
d=2,q=8
∴an=3+(n-1)*2=2n+1
bn=8^(n-1)
(2)sn= n^2+2n
1/s1+1/s2+1/s3+……+1/sn和为S
S=1/3+1/8+1/15+1/24…+1/(n*(n+2))
=1/2(1-1/3+1/2-1/4+1/3-1/5… +1/n-1/(n+2))
=1/2(3/2-1/(n+1)-1/(n+2))
=3/4-(2n+3)/(2*(n+1)*(n+2))
可得方程组
(3+3+d)*q=64
(3+3+d+3+2d)*q^2=960
d=2,q=8
∴an=3+(n-1)*2=2n+1
bn=8^(n-1)
(2)sn= n^2+2n
1/s1+1/s2+1/s3+……+1/sn和为S
S=1/3+1/8+1/15+1/24…+1/(n*(n+2))
=1/2(1-1/3+1/2-1/4+1/3-1/5… +1/n-1/(n+2))
=1/2(3/2-1/(n+1)-1/(n+2))
=3/4-(2n+3)/(2*(n+1)*(n+2))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询