求函数f﹙x﹚=x²﹣2x﹢2/x﹙0<x≤1/4﹚的最小值
3个回答
展开全部
题目表述有误::正确说法为:求函数f(x)=(x²-2x+2)∕x (0<x≤1∕4)的最小值。
解:令f'(x)=1-2/x²=0,可得:x=√2
当0<x<√2时,f'(x)<0,此时f(x)单调递减,
所以f(x)在(0,1/4]上也 单减,所以f(x)(0,1/4]上的最小值为f(1/4)=25/4
解:令f'(x)=1-2/x²=0,可得:x=√2
当0<x<√2时,f'(x)<0,此时f(x)单调递减,
所以f(x)在(0,1/4]上也 单减,所以f(x)(0,1/4]上的最小值为f(1/4)=25/4
追问
f'(x)=1-2/x²=0,这个你是从哪里得到的
追答
0<x<=1/4
f(x)=(x²-2x+2)/x=x+2/x-2
f'(x)=1-2/x²=(x²-2)/x²<0 (0<x<=1/4)
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
函数f﹙x﹚=x²﹣2x﹢2/x
=x+2/x-2
函数在(1,√2)内是减函数,在(√2,+无穷)上是增函数
所以 0<x≤1/4在减区间内
所以x=1/4
最小值=25/4
=x+2/x-2
函数在(1,√2)内是减函数,在(√2,+无穷)上是增函数
所以 0<x≤1/4在减区间内
所以x=1/4
最小值=25/4
追问
函数解析式是怎么变成x+2/x-2,解释一下好吗,我数学不好
追答
我理解 是这样的 (x²﹣2x﹢2)/x
所以 =(x)-(2)+(2/x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
25/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询