![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
定义在R上的偶函数f(x)满足:对任意的x1,x2∈【0,﹢∞)(x1≠x2)
定义在R上的偶函数f(x)满足:对任意的x1,x2∈【0,﹢∞)(x1≠x2),有f(x2)-f(x1)/x2-x1<0,则A.f(3)<f(-2)<f(1)B.f(1)...
定义在R上的偶函数f(x)满足:对任意的x1,x2∈【0,﹢∞)(x1≠x2),有f(x2)-f(x1)/x2-x1<0 ,则
A. f(3)<f(-2)<f(1) B. f(1)<f(-2)<f(3)
C. f(-2)<f(1)<(3) D. f(3)<f(1)<f(-2) 展开
A. f(3)<f(-2)<f(1) B. f(1)<f(-2)<f(3)
C. f(-2)<f(1)<(3) D. f(3)<f(1)<f(-2) 展开
展开全部
:∵(x2-x1)(f(x2)-f(x1))>0,
∴f(x2)-f(x1)x2-x1>则f(x)在x1,x2∈[0,+∞)(x1≠x2)上单调递增,
又f(x)是偶函数,故f(x)在x1,x2∈(-∞,0](x1≠x2)单调递减.
且满足n∈N*时,f(-2)=f(2),3>2>1>0,
得f(1)<f(-2)<f(3),
故选B.
∴f(x2)-f(x1)x2-x1>则f(x)在x1,x2∈[0,+∞)(x1≠x2)上单调递增,
又f(x)是偶函数,故f(x)在x1,x2∈(-∞,0](x1≠x2)单调递减.
且满足n∈N*时,f(-2)=f(2),3>2>1>0,
得f(1)<f(-2)<f(3),
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |