已知函数f(x)的图像关于直线x=a和点(b,0)(a<b)对称,求f(x)的周期
1个回答
展开全部
若f(x)图像关于x=a,(b,0)对称,则T=4(b-a)
证明:
因为f(x)图像关于x=a对称, 所以f(a+x)=f(a-x) f(x)=f(2a-x)
因为f(x)图像关于(b,0)对称,所以f(b+x)=-f(b-x) f(x)=-f(2b-x)
这样f(x)=f(2a-x)=-f[2b-(2a-x)]=-f[2(b-a)+x]
f[4(b-a)+x]=f[2(b-a)+2(b-a)+x]=-f[2(b-a)+x]
即f(x+4b-4a)=f(x),
f(x)为周期函数,T=4(b-a)
证明:
因为f(x)图像关于x=a对称, 所以f(a+x)=f(a-x) f(x)=f(2a-x)
因为f(x)图像关于(b,0)对称,所以f(b+x)=-f(b-x) f(x)=-f(2b-x)
这样f(x)=f(2a-x)=-f[2b-(2a-x)]=-f[2(b-a)+x]
f[4(b-a)+x]=f[2(b-a)+2(b-a)+x]=-f[2(b-a)+x]
即f(x+4b-4a)=f(x),
f(x)为周期函数,T=4(b-a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询