已知tanα=2,且α为第三象限角,求cos(α+π/3),sin2α
1个回答
展开全部
第一个问题:
cos(α+π/3)
=cosαcos(π/3)-sinαsin(π/3)=(1/2)cosα-(√3/2)sinα
=(1/2)cosα/√[(sinα)^2+(cosα)^2]-(√3/2)sinα/√[(sinα)^2+(cosα)^2]
=-(1/2)/√[(tanα)^2+1]+(√3/2)tanα/√[(tanα)^2+1]
=-(1/2)/√(4+1)+(√3/2)×2/√(4+1)
=√15/5-√5/10。
第二个问题:
sin2α
=2sinαcosα=2sinαcosα/[(sinα)^2+(cosα)^2]
=2tanα/[(tanα)^2+1]=2×2/(4+1)=4/5。
cos(α+π/3)
=cosαcos(π/3)-sinαsin(π/3)=(1/2)cosα-(√3/2)sinα
=(1/2)cosα/√[(sinα)^2+(cosα)^2]-(√3/2)sinα/√[(sinα)^2+(cosα)^2]
=-(1/2)/√[(tanα)^2+1]+(√3/2)tanα/√[(tanα)^2+1]
=-(1/2)/√(4+1)+(√3/2)×2/√(4+1)
=√15/5-√5/10。
第二个问题:
sin2α
=2sinαcosα=2sinαcosα/[(sinα)^2+(cosα)^2]
=2tanα/[(tanα)^2+1]=2×2/(4+1)=4/5。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询