设函数f(x)=a-2/(2^x+1),其中a为常数。判断f(x)的单调性
展开全部
f(x)= a - 2/(2^x+1)
令x1<x2
f(x2)-f(x1)= [ a - 2/(2^x2+1) ] - [ a - 2/(2^x1+1) ]
= - 2/(2^x2+1) + 2/ (2^x1+1)
= (2^x2+1-2^x1-1)/[(2^x2+1)(2^x1+1)]
= (2^x2-2^x1)/[(2^x2+1)(2^x1+1)]
∵x2>x1,∴2^x2>2^x1,∴2^x2-2^x1>0
又:[(2^x2+1)(2^x1+1)]>0
∴f(x2)-f(x1)>0
即:f(x2)>f(x1) ,
即函数是增函数
令x1<x2
f(x2)-f(x1)= [ a - 2/(2^x2+1) ] - [ a - 2/(2^x1+1) ]
= - 2/(2^x2+1) + 2/ (2^x1+1)
= (2^x2+1-2^x1-1)/[(2^x2+1)(2^x1+1)]
= (2^x2-2^x1)/[(2^x2+1)(2^x1+1)]
∵x2>x1,∴2^x2>2^x1,∴2^x2-2^x1>0
又:[(2^x2+1)(2^x1+1)]>0
∴f(x2)-f(x1)>0
即:f(x2)>f(x1) ,
即函数是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询