19、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点的坐标是(0,0),B点的坐标是(3,4),矩形
19、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点的坐标是(0,0),B点的坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E,F分...
19、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点的坐标是(0,0),B点的坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E,F分别在AD和AB上,且F点的坐标是(2,4)。
(3)点N在x轴上,直线EF是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形,若存在请直接写出M点的坐标;若不存在,请说明理由。
求高手。。。 展开
(3)点N在x轴上,直线EF是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形,若存在请直接写出M点的坐标;若不存在,请说明理由。
求高手。。。 展开
展开全部
俊狼猎英团队为您解答:
设EG与X轴交于P,直线EF:Y=√3X+(4-2√3),
则P(2-4√3/3,0)
①MN∥FG,MN=FG的情况:则ΔMNP是等边三角形,
∴PN=FG=2,∴N(4-4√3/3,0)或(-4√3/3,0)
M1(1-2√3/3,2-√3),M2(3-4√3/3,2+√3)
②MN是对角线。G(3,4-√3),FG中点(5/2,4-1/2√3)
∴M的纵坐标:8-√3,
∴8-√3=√3X+(4-2√3),√3X=4+√3,
X=4√3/3+1
∴M3(4√3/3+1,8-√3)。
设EG与X轴交于P,直线EF:Y=√3X+(4-2√3),
则P(2-4√3/3,0)
①MN∥FG,MN=FG的情况:则ΔMNP是等边三角形,
∴PN=FG=2,∴N(4-4√3/3,0)或(-4√3/3,0)
M1(1-2√3/3,2-√3),M2(3-4√3/3,2+√3)
②MN是对角线。G(3,4-√3),FG中点(5/2,4-1/2√3)
∴M的纵坐标:8-√3,
∴8-√3=√3X+(4-2√3),√3X=4+√3,
X=4√3/3+1
∴M3(4√3/3+1,8-√3)。
追问
①MN∥FG,MN=FG的情况:则ΔMNP是等边三角形,
M1(1-4√3/3,-√3),M2(3-4√3/3,√3)
追答
正是。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询