将二次积分化为极坐标形式的二次积分

∫0、1dx∫0、1f(x,y)dy它的积分区域如何判断,如果是一个圆呢,为什么圆积分区域的ρ可以是纯数字,因为它的值一直是半径不变吗?求详解,谢谢... ∫0、1 dx∫0、1 f(x,y)dy 它的积分区域如何判断,如果是一个圆呢,为什么圆积分区域的ρ可以是纯数字,因为它的值一直是半径不变吗?求详解,谢谢 展开
hhlcai
2012-10-15 · TA获得超过7029个赞
知道大有可为答主
回答量:1057
采纳率:100%
帮助的人:435万
展开全部
这个积分区域应该是个边长为1的正方形内部。
如果要用极坐标,令x=rcost,y=rsint,则dxdy=rdrdt
则把正方形区域按照角度分为两个区域R1,R2
其中R1={(r,t)| 0≤r≤1/cost, 0≤t≤π/4}
R2={(r,t)| 0≤r≤1/sint, π/4≤t≤π/2}
从而原式=∫ [0,π/4] dt ∫[0,1/cost] f(rcost,rsint)rdr+∫ [π/4,π/2] dt ∫[0,1/sint] f(rcost,rsint)rdr
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式