∫[0,π/4] (tanx)^2dx求详细过程

匿名用户
2012-10-16
展开全部
关键是求出:∫(tanx)^2dx。
方法一:
∫(tanx)^2dx
=∫[(sinx)^2/(cosx)^2]dx=-∫[sinx/(cox)^2]d(cosx)=∫sinxd(1/cosx)
=sinx/cosx-∫(1/cosx)d(sinx)=tanx-∫(cosx/cosx)dx=tanx-x+C。

方法二:
∫(tanx)^2dx
=∫[(sinx)^2/(cosx)^2]dx=∫{[1-(cosx)^2]/(cosx)^2}dx
=∫[1/(cosx)^2]dx-∫dx=tanx-x+C。

方法三:
∫(tanx)^2dx
=∫[(sinx)^2/(cosx)^2]dx=∫(sinx)^2d(tanx)=(sinx)^2tanx-∫tanxd[(sinx)^2]
=(sinx)^2tanx-∫tanx(2sinxcosx)dx=(sinx)^2tanx-∫[2(sinx)^2]dx
=(sinx)^2tanx-∫(1-cos2x)dx=(sinx)^2tanx-∫dx+(1/2)∫cos2xd(2x)
=(sinx)^2tanx-x+(1/2)sin2x+C=(sinx)^2tanx+sinxcosx-x+C
=(sinx)^2tanx+tanx(cosx)^2-x+C=tanx-x+C。

于是:
∫(上限为π/4、下限为0)(tanx)^2dx
=(tanx-x)|(上限为π/4、下限为0)=tan(π/4)-π/4=1-π/4。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友af34c30f5
2012-10-16 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:7004万
展开全部
注意有公式
(tanx)^2+1=(secx)^2 (tanx)^2=(secx)^2 -1
dtanx=(secx)^2dx ∫(secx)^2dx=tanx+C

∫[0,π/4] (tanx)^2dx
=∫[0,π/4] [(secx)^2-1]dx
=[tanx-x](0,π/4)
=1+π/4
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式