lim sin[π(n^2+1)^1/2] n趋向无穷求极限 求详解
展开全部
lim sin[π(n^2+1)^1/2]=lim {sin[π(n^2+1)^1/2]-sin nπ}
=lim cos(π/2)((n^2+1)^1/2+n) sin (π/2)[(n^2+1)^1/2-n)]
=lim cos(π/2)((n^2+1)^1/2+n) sin (π/2){1/[(n^2+1)^1/2+n)]}.
cos(π/2)((n^2+1)^1/2+n)有界,lim sin (π/2){1/[(n^2+1)^1/2+n)]}=0
有界与无穷小之积仍是无穷小。所以
.lim sin[π(n^2+1)^1/2]=0
=lim cos(π/2)((n^2+1)^1/2+n) sin (π/2)[(n^2+1)^1/2-n)]
=lim cos(π/2)((n^2+1)^1/2+n) sin (π/2){1/[(n^2+1)^1/2+n)]}.
cos(π/2)((n^2+1)^1/2+n)有界,lim sin (π/2){1/[(n^2+1)^1/2+n)]}=0
有界与无穷小之积仍是无穷小。所以
.lim sin[π(n^2+1)^1/2]=0
展开全部
求极限 n➔∞lim sin[π√(n²+1)]
解:当n=1时,sin(π√2)=sin(1.4142....π)=sin(π+0.4142....π)=-sin(0.4142....π)
当n=2时,sin(π√5)=sin(2.2360.....π)=sin(2π+0.2360...π)=sin(0.2360.....π)
当n=3时,sin(π√10)=sin(3.1622...π)=sin(3π+0.1622...π)=-sin(0.1622...π)
当n=4时,sin(π√17)=sin4.12310...π)=sin(4π+0.12310...π)=sin(0.12310...π)
当n=5时,sin(π√26)=sin(5.0990...π)=sin(5π+0.0990...π)=-sin(0.0990.....π)
当n=6时,sin(π√37)=sin(6.08276...π)=sin(6π+0.08276...π)=sin(0.08276...π)
................................................................................................................
可以预期,n➔∞lim sin[π√(n²+1)] =0
理论上的严格证明,似乎有点难。
解:当n=1时,sin(π√2)=sin(1.4142....π)=sin(π+0.4142....π)=-sin(0.4142....π)
当n=2时,sin(π√5)=sin(2.2360.....π)=sin(2π+0.2360...π)=sin(0.2360.....π)
当n=3时,sin(π√10)=sin(3.1622...π)=sin(3π+0.1622...π)=-sin(0.1622...π)
当n=4时,sin(π√17)=sin4.12310...π)=sin(4π+0.12310...π)=sin(0.12310...π)
当n=5时,sin(π√26)=sin(5.0990...π)=sin(5π+0.0990...π)=-sin(0.0990.....π)
当n=6时,sin(π√37)=sin(6.08276...π)=sin(6π+0.08276...π)=sin(0.08276...π)
................................................................................................................
可以预期,n➔∞lim sin[π√(n²+1)] =0
理论上的严格证明,似乎有点难。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim sin[π(n^2+1)^(1/2)]
=lim (-1)^n*sin[π(n^2+1)^(1/2)-nπ]
=lim (-1)^n*sin[π/【(n^2+1)^(1/2)+n】]
=0。最后一个等式是无穷小量乘以有界量
=lim (-1)^n*sin[π(n^2+1)^(1/2)-nπ]
=lim (-1)^n*sin[π/【(n^2+1)^(1/2)+n】]
=0。最后一个等式是无穷小量乘以有界量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询