如图,在RT△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中点,DE的延长线与BC的延长线交于点F

(1)求证:FC分之FD=DC分之BD(2)若FC分之BC=4分之5,求DC分之BD图片逆时针转90°,那个“3/10”不用管没关系的... (1)求证:FC分之FD=DC分之BD
(2)若FC分之BC=4分之5,求DC分之BD
图片逆时针转90°,那个“3/10”不用管没关系的
展开
 我来答
井白亦Tm
2012-10-16 · TA获得超过5334个赞
知道小有建树答主
回答量:1106
采纳率:100%
帮助的人:1140万
展开全部
1、证明:过C作CG∥FD,交AB于G,
则∠F=∠BCG
又E为AC中点,所以CG=2DE (在三角形ACG中,利用中线定理)
又因为CD⊥AB,E为AC中点,所以AC=2DE,∠DCE=∠CDE
所以CG=AC,
又在直角三角形ABC中CD⊥AB,则很容易证明:∠DCE=∠B(互余)
所以∠CDE=∠B
则△BCG∽△DFC
所以FC/CG=FD/BC,即FC/FD=CG/BC
所以FC/FD=AC/BC
又在直角三角形ABC中CD⊥AB,则很容易证明:RT△ACD∽RT△CBD
则AC/BC=DC/BD
所以FC/FD=DC/BD
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式