如图在四棱锥P一ABCD中底面ABCD是平行四边形且PA垂直于ABCD,BD重直于PC,E是PA的

如图在四棱锥P一ABCD中底面ABCD是平行四边形且PA垂直于ABCD,BD重直于PC,E是PA的中点求平面PA垂直平面EBD... 如图在四棱锥P一ABCD中底面ABCD是平行四边形且PA垂直于ABCD,BD重直于PC,E是PA的中点求平面PA垂直平面EBD 展开
匿名用户
2014-04-17
展开全部
第一个问题:
∵PD⊥平面ABCD,∴AD⊥PD。
∵∠BAD=60°、AB=2AD,∴AD⊥BD。
由AD⊥PD、AD⊥BD、PD∩BD-D,得:AD⊥平面ABD,∴AD⊥BD。
第二个问题:
∵PD=AD=1,∴AB=2。
∵∠BAD=60°、AD⊥BD、AD=1,∴BD=√3。
∵PD⊥平面ABCD,∴PD⊥BD,∴PB=√(PD^2+BD^2)=√(1+3)=2。
∵ABCD是平行四边形,∴AD=BC、AD∥BC,而AD⊥BD,∴BC⊥BD,
∴△PBC的面积=(1/2)PB×BC=(1/2)×2×1=1。
又△BCD的面积=(1/2)BD×BC=(1/2)×√3×1=√3/2令棱锥D-PBC的高为h,则由D-PBC的体积=A-BCD的体积,得:
(1/3)△PBC的面积×h=(1/3)△BCD的面积×PD,
∴h=(√3/2)×1=√3/2。
即:棱锥D-PBC的高为√3/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式