求不定积分 ∫[1/(sinx+cosx+√2 )] dx 在线等
2个回答
展开全部
原式=∫1/[√2sin(x+π/4)+√2]dx
=(1/√2)∫1/[1+sin(x+π/4)]d(x+π/4)
上下同乘1-sin(x+π/4)
=(1/√2)∫[1-sin(x+π/4)]/[(cos(x+π/4))^2] d(x+π/4)
=(1/√2)[tan(x+π/4)-sec(x+pi/4)] + C
=(1/√2)∫1/[1+sin(x+π/4)]d(x+π/4)
上下同乘1-sin(x+π/4)
=(1/√2)∫[1-sin(x+π/4)]/[(cos(x+π/4))^2] d(x+π/4)
=(1/√2)[tan(x+π/4)-sec(x+pi/4)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[1/(sinx+cosx+√2)]dx
=(1/√2)∫{1/[cosxcos(π/4)+sinxsin(π/4)+1]}dx
=(1/√2)∫{1/[1+cos(x-π/4)]}dx
=[1/(2√2)]∫{1/[cos(x/2-π/8)]^2}dx
=(1/√2)∫{1/[cos(x/2-π/8)]^2}d(x/2-π/8)
=(√2/2)tan(x/2-π/8)+C
=(1/√2)∫{1/[cosxcos(π/4)+sinxsin(π/4)+1]}dx
=(1/√2)∫{1/[1+cos(x-π/4)]}dx
=[1/(2√2)]∫{1/[cos(x/2-π/8)]^2}dx
=(1/√2)∫{1/[cos(x/2-π/8)]^2}d(x/2-π/8)
=(√2/2)tan(x/2-π/8)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询