2个回答
展开全部
f(x)=x^2*lnx 定义域 x>0
f'(x)
=2xlnx+x²(1/x)
=2xlnx+x
=x(2lnx+1)
x>0 令f'(x)=0 亦即 2lnx+1=0
lnx=-1/2 解得 x=e^(-1/2)=√e/e
当0<x<√e/e时, f'(x)<0 单调减
当x>√e/e时,f'(x)>0 单调增
所以在x=√e/e时取的极小值 为:
f(√e/e)=1/e×(-1/2)=-1/(2e)
有极小值 -1/(2e)
因为定义域x>0 (所以没有x=0这个极值点的)
f'(x)
=2xlnx+x²(1/x)
=2xlnx+x
=x(2lnx+1)
x>0 令f'(x)=0 亦即 2lnx+1=0
lnx=-1/2 解得 x=e^(-1/2)=√e/e
当0<x<√e/e时, f'(x)<0 单调减
当x>√e/e时,f'(x)>0 单调增
所以在x=√e/e时取的极小值 为:
f(√e/e)=1/e×(-1/2)=-1/(2e)
有极小值 -1/(2e)
因为定义域x>0 (所以没有x=0这个极值点的)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询