展开全部
令x=y=0,得f(0)=0.由倒数的定义得
f'(x)=lim(y趋向于0)[f(x+y)-f(x)]/y
=lim(y趋向于0)[f(y)e^x+f(x)e^y-f(x)]/y
=lim(y趋向于0)[f(y)e^x]/y+lim(y趋向于0)[(e^y-1)f(x)]/y
=lim(y趋向于0){e^x[f(y)-f(0)]}/y+f(x)
=f'(x)e^x+f(x)
=e^(x+1)+f(x)
即f'(x)-f(x)=e^(x+1),由通解公式得
f(x)=xe^(x+1)+Ce^x.又f(0)=0,可得C=0.
故f(x)=xe^(x+1).所以f'(x)=(x+1)e^(x+1).
f'(x)=lim(y趋向于0)[f(x+y)-f(x)]/y
=lim(y趋向于0)[f(y)e^x+f(x)e^y-f(x)]/y
=lim(y趋向于0)[f(y)e^x]/y+lim(y趋向于0)[(e^y-1)f(x)]/y
=lim(y趋向于0){e^x[f(y)-f(0)]}/y+f(x)
=f'(x)e^x+f(x)
=e^(x+1)+f(x)
即f'(x)-f(x)=e^(x+1),由通解公式得
f(x)=xe^(x+1)+Ce^x.又f(0)=0,可得C=0.
故f(x)=xe^(x+1).所以f'(x)=(x+1)e^(x+1).
2012-10-18
展开全部
两边同时除以e^(x+y)得
f(x+y)/e^(x+y)=f(x)/e^x+f(y)/e^y
所以令f(x)/e^x=g(x),上式变成g(x+y)=g(x)+g(y).容易知道g(0)=0
题目已知f'(0)=e.
又f'(x)=(g(x)+g'(x))e^x,故得g(0)+g'(0)=e,g'(0)=e
g'(x)=lim(g(t+x)-g(x))/t=limg(t)/t=lim(g(t)-g(0))/(t-0)=g'(0)=e
所以g(x)=ex+g(0)=ex
f(x)=exe^x
f'(x)=e^x(ex+e)
f(x+y)/e^(x+y)=f(x)/e^x+f(y)/e^y
所以令f(x)/e^x=g(x),上式变成g(x+y)=g(x)+g(y).容易知道g(0)=0
题目已知f'(0)=e.
又f'(x)=(g(x)+g'(x))e^x,故得g(0)+g'(0)=e,g'(0)=e
g'(x)=lim(g(t+x)-g(x))/t=limg(t)/t=lim(g(t)-g(0))/(t-0)=g'(0)=e
所以g(x)=ex+g(0)=ex
f(x)=exe^x
f'(x)=e^x(ex+e)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |