微积分问题
1个回答
展开全部
令x=sinθ,则:√(1-x^2)=√[1-(sinθ)^2]=cosθ,θ=arcsinx,dx=cosθdθ。
∴原式=∫[cosθ/(2sinθ+cosθ)]dθ。
引入辅助角α,使cosα=2/√5、sinα=1/√5,则:α=arcsin(1/√5)。
∴原式
=(1/√5)∫[cosθ/(sinθcosα+cosθsinα)]dθ
=(1/√5)∫[cosθ/sin(θ+α)]dθ
=(1/√5)∫[cos(θ+α-α)/sin(θ+α)]d(θ+α)
=(1/√5)∫{[cos(θ+α)cosα+sinθ(θ+α)sinα]/sin(θ+α)}d(θ+α)
=(1/√5)cosα∫[cos(θ+α)/sin(θ+α)]d(θ+α)+(1/√5)sinα∫d(θ+α)
=(1/√5)×(2/√5)∫[1/sin(θ+α)]d[sin(θ+α)]+(1/√5)×(1/√5)(θ+α)
=(2/5)ln|sin(θ+α)|+(1/5)(θ+α)+C
=(2/5)ln|sinθcosα+cosθsinα|+(1/5)θ+C
=裂裂(2/5)ln|(2/√5)x+(1/√5)√(1-x^2)|+(1/5)arcsinx+C
=(2/5)举源铅ln|2x+√(1-x^2)|-2ln(√5)+(1/5)arcsinx+正好C
=(2/5)ln|2x+√(1-x^2)|+(1/5)arcsinx+C
∴原式=∫[cosθ/(2sinθ+cosθ)]dθ。
引入辅助角α,使cosα=2/√5、sinα=1/√5,则:α=arcsin(1/√5)。
∴原式
=(1/√5)∫[cosθ/(sinθcosα+cosθsinα)]dθ
=(1/√5)∫[cosθ/sin(θ+α)]dθ
=(1/√5)∫[cos(θ+α-α)/sin(θ+α)]d(θ+α)
=(1/√5)∫{[cos(θ+α)cosα+sinθ(θ+α)sinα]/sin(θ+α)}d(θ+α)
=(1/√5)cosα∫[cos(θ+α)/sin(θ+α)]d(θ+α)+(1/√5)sinα∫d(θ+α)
=(1/√5)×(2/√5)∫[1/sin(θ+α)]d[sin(θ+α)]+(1/√5)×(1/√5)(θ+α)
=(2/5)ln|sin(θ+α)|+(1/5)(θ+α)+C
=(2/5)ln|sinθcosα+cosθsinα|+(1/5)θ+C
=裂裂(2/5)ln|(2/√5)x+(1/√5)√(1-x^2)|+(1/5)arcsinx+C
=(2/5)举源铅ln|2x+√(1-x^2)|-2ln(√5)+(1/5)arcsinx+正好C
=(2/5)ln|2x+√(1-x^2)|+(1/5)arcsinx+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询