如何用二重积分的极坐标形式积出圆心在原点的圆的面积
3个回答
展开全部
解:均可以直角坐标系的原点为极点、x轴正向为极轴方向,建立极坐标系,设x=rcosθ,y=rsinθ变换求解。
【设圆的半径为a】从左到右,第1图,积分区域D={(r,θ)丨0≤r≤2asinθ,0≤θ≤π}。
第2图,积分区域D={(r,θ)丨0≤r≤2acosθ,-π/2≤θ≤π/2}。
第3图,极轴和极角取决于圆心的位置。过原点作圆的两条切线,切线与x轴夹角即为θ的变化范围;将x=rcosθ,y=rsinθ代入圆的方程,确定r的范围。
极坐标方程的应用
定位和导航
极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。例如,飞机使用极坐标的一个略加修改的版本进行导航。
这个系统中是一般的用于导航任何种类中的一个系统,在0°射线一般被称为航向360,并且角度是以顺时针方向继续,而不是逆时针方向,如同在数学系统那样。
航向360对应地磁北极,而航向90,180,和270分别对应于磁东,南,西。因此,一架飞机向正东方向上航行5海里将是在航向90(空中交通管制读作090)上航行5个单位。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询