分解因式(2x-y)^4-(2x+y)^4
展开全部
(2x-y)^4-(2x+y)^4
=[(2x-y)²-(2x+y)²][(2x-y)²+(2x+y)²]
=(2x-y-2x-y)(2x-y+2x+y)(4x²-4xy+y²+4x²+4xy+y²)
=-2y*4x*(8x²+2y²)
=-8xy(8x²+2y²)
=-16xy(4x²+y²)
=[(2x-y)²-(2x+y)²][(2x-y)²+(2x+y)²]
=(2x-y-2x-y)(2x-y+2x+y)(4x²-4xy+y²+4x²+4xy+y²)
=-2y*4x*(8x²+2y²)
=-8xy(8x²+2y²)
=-16xy(4x²+y²)
追问
请写详细点 谢谢 =-8xy(8x²+2y²)
-16xy(4x²+y²)
追答
(2x-y)^4-(2x+y)^4
=[(2x-y)²-(2x+y)²][(2x-y)²+(2x+y)²]
=(2x-y-2x-y)(2x-y+2x+y)(4x²-4xy+y²+4x²+4xy+y²)
=-2y*4x*(8x²+2y²)
=-8xy(8x²+2y²)
=-8xy*2(4x²+y²)
=-16xy(4x²+y²)
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询